List of uniform polyhedra

From Wikipedia, the free encyclopedia

Uniform polyhedra and tilings form a well studied group. They are listed here for quick comparison of their properties and varied naming schemes and symbols.

This list includes:

Not included are:

Contents

[edit] Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be show.

[edit] Convex forms (3 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Tetrahedron R 3|2 3
3.3.3
Tet Td W001 U01 K06 4 6 4 2 4{3}
Triangular prism P 2 3|2
3.4.4
Trip D3h -- -- -- 6 9 5 2 2{3}+3{4}
Truncated tetrahedron A 2 3|3
3.6.6
Tut Td W006 U02 K07 12 18 8 2 4{3}+4{6}
Truncated cube A 2 3|4
3.8.8
Tic Oh W008 U09 K14 24 36 14 2 8{3}+6{8}
Truncated dodecahedron A 2 3|5
3.10.10
Tid Ih W010 U26 K31 60 90 32 2 20{3}+12{10}
Truncated hexagonal tiling T 2 3|6
3.12.12
Toxat P6m -- -- -- 6n 9n 3n 0 n{12}+2n{3}
Truncated heptagonal tiling T 2 3|7 3.14.14 -- *732 -- -- -- -- -- -- 0 n{14}+2n{3}
Cube R 3|2 4
4.4.4
Cube Oh W003 U06 K11 8 12 6 2 6{4}
Pentagonal prism P 2 5|2
4.4.5
Pip D5h -- U76 K01 10 15 7 2 5{4}+2{5}
Hexagonal prism P 2 6|2
4.4.6
Hip D6h -- -- -- 12 18 8 2 6{4}+2{6}
Octagonal prism P 2 8|2
4.4.8
Op D8h -- -- -- 16 24 10 2 8{4}+2{8}
Decagonal prism P 2 10|2
4.4.10
Dip D10h -- -- -- 20 30 12 2 10{4}+2{10}
Dodecagonal prism P 2 12|2
4.4.12
Twip D12h -- -- -- 24 36 14 2 12{4}+2{12}
Truncated octahedron A 2 4|3
4.6.6
Toe Oh W007 U08 K13 24 36 14 2 6{4}+8{6}
Great rhombicuboctahedron A 2 3 4|
4.6.8
Girco Oh W015 U11 K16 48 72 26 2 12{4}+8{6}+6{8}
Great rhombicosidodecahedron A 2 3 5|
4.6.10
Grid Ih W016 U28 K33 120 180 62 2 30{4}+20{6}+12{10}
Great rhombitrihexagonal tiling T 2 3 6|
4.6.12
Othat p6m -- -- -- 12n 18n 6n 0 3n{4}+2n{6}+n{12}
Great rhombitriheptagonal tiling T 2 3 7|
4.6.14
-- *732 -- -- -- 14n 21n 7n 0 3n{4}+2n{7}+n{14}
Truncated square tiling T 2 4|4
4.8.8
Tosquat p4m -- -- -- 4n 6n 2n 0 n{4}+n{8}
Dodecahedron R 3|2 5
5.5.5
Doe Ih W005 U23 K28 20 30 12 2 12{5}
Truncated icosahedron A 2 5|3
5.6.6
Ti Ih W009 U25 K30 60 90 32 2 12{5}+20{6}
Hexagonal tiling T 3|2 6
6.6.6
Hexat p6m -- -- -- 2n 3n n 0 n{6}
Order-3 heptagonal tiling T 3|2 7
7.7.7
- *732 -- -- -- 2n 3n n 0 n{7}

[edit] Convex forms (4 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Octahedron R 4|2 3
3.3.3.3
Oct Oh W002 U05 K10 6 12 8 2 8{3}
Square antiprism P |2 2 4
3.3.3.4
Squap D4d -- -- -- 8 16 10 2 8{3}+2{4}
Pentagonal antiprism P |2 2 5
3.3.3.5
Pap D5d -- U77 K02 10 20 12 2 10{3}+2{5}
Hexagonal antiprism P |2 2 6
3.3.3.6
Hap D6d -- -- -- 12 24 14 2 12{3}+2{6}
Octagonal antiprism P |2 2 8
3.3.3.8
Oap D8d -- -- -- 16 32 18 2 16{3}+2{8}
Decagonal antiprism P |2 2 10
3.3.3.10
Dap D10d -- -- -- 20 40 22 2 20{3}+2{10}
Dodecagonal antiprism P |2 2 12
3.3.3.12
Twap D12d -- -- -- 24 48 26 2 24{3}+2{12}
Cuboctahedron A 2|3 4
3.4.3.4
Co Oh W011 U07 K12 12 24 14 2 8{3}+6{4}
Small rhombicuboctahedron A 3 4|2
3.4.4.4
Sirco Oh W013 U10 K15 24 48 26 2 8{3}+(6+12){4}
Small rhombicosidodecahedron A 3 5|2
3.4.5.4
Srid Ih W014 U27 K32 60 120 62 2 20{3}+30{4}+12{5}
Small rhombitrihexagonal tiling T 3 6|2
3.4.6.4
Rothat p6m -- -- -- 6n 12n 6n 0 2n{3}+3n{4}+n{6}
Icosidodecahedron A 2|3 5
3.5.3.5
Id Ih W012 U24 K29 30 60 32 2 20{3}+12{5}
Trihexagonal tiling T 2|3 6
3.6.3.6
That p6m -- -- -- 3n 6n 3n 0 2n{3}+n{6}
Triheptagonal tiling T 2|3 7
3.7.3.7
-- *732 -- -- -- 3n 7n 3n 0 2n{3}+n{7}
Square tiling T 4|2 4
4.4.4.4
Squat p4m -- -- -- n 2n n 0 n{4}

[edit] Convex forms (5 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Icosahedron R 5|2 3
3.3.3.3.3
Ike Ih W004 U22 K27 12 30 20 2 20{3}
Snub cube A |2 3 4
3.3.3.3.4
Snic O W017 U12 K17 24 60 38 2 (8+24){3}+6{4}
Snub dodecahedron A |2 3 5
3.3.3.3.5
Snid I W018 U29 K34 60 150 92 2 (20+60){3}+12{5}
Snub hexagonal tiling T |2 3 6
3.3.3.3.6
Snathat p6 -- -- -- 6n 15n 9n 0 8n{3}+n{6}
Elongated triangular tiling T |2 2 (2|2)
3.3.3.4.4
Etrat cmm -- -- -- 2n 5n 3n 0 2n{3}+n{4}
Snub square tiling T |2 4 4
3.3.4.3.4
Snasquat p4g -- -- -- 4n 10n 6n 0 4n{3}+2n{4}

[edit] Convex forms (6 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Triangular tiling T 6|2 3
3.3.3.3.3.3
Trat p6m -- -- -- n 3n 2n 0 2n{3}

[edit] Convex forms (7 faces/vertex)

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Order-7 triangular tiling T 7|2 3
3.3.3.3.3.3.3
-- *732 -- -- -- n 3n 2n 0 2n{3}

[edit] Nonconvex forms with convex faces

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Tetrahemihexahedron C+ 3/2 3|2
4.3/2.4.3
Thah Td W067 U04 K09 6 12 7 1 4{3}+3{4}
Cubohemioctahedron C+ 4/3 4|3
6.4/3.6.4
Cho Oh W078 U15 K20 12 24 10 -2 6{4}+4{6}
Octahemioctahedron C+ 3/2 3|3
6.3/2.6.3
Oho Oh W068 U03 K08 12 24 12 0 8{3}+4{6}
Great dodecahedron R+ 5/2|2 5
(5.5.5.5.5)/2
Gad Ih W021 U35 K40 12 30 12 -6 12{5}
Great icosahedron R+ 5/2|2 3
(3.3.3.3.3)/2
Gike Ih W041 U53 K58 12 30 20 2 20{3}
Great ditrigonal icosidodecahedron C+ 3/2|3 5
(5.3.5.3.5.3)/2
Gidtid Ih W087 U47 K52 20 60 32 -8 20{3}+12{5}
Small rhombihexahedron C+ 3/2 2 4|
4.8.4/3.8
Sroh Oh W086 U18 K23 24 48 18 -6 12{4}+6{8}
Small cubicuboctahedron C+ 3/2 4|4
8.3/2.8.4
Socco Oh W069 U13 K18 24 48 20 -4 8{3}+6{4}+6{8}
Uniform great rhombicuboctahedron C+ 3/2 4|2
4.3/2.4.4
Querco Oh W085 U17 K22 24 48 26 2 8{3}+(6+12){4}
Small dodecahemidodecahedron C+ 5/4 5|5
10.5/4.10.5
Sidhid Ih W091 U51 K56 30 60 18 -12 12{5}+6{10}
Small icosihemidodecahedron C+ 3/2 3|5
10.3/2.10.3
Seihid Ih W089 U49 K54 30 60 26 -4 20{3}+6{10}
Small dodecicosahedron C+ 3/2 3 5|
10.6.10/9.6/5
Siddy Ih W090 U50 K55 60 120 32 -28 20{6}+12{10}
Small rhombidodecahedron C+ 2 5/2 5|
10.4.10/9.4/3
Sird Ih W074 U39 K44 60 120 42 -18 30{4}+12{10}
Small dodecicosidodecahedron C+ 3/2 5|5
10.3/2.10.5
Saddid Ih W072 U33 K38 60 120 44 -16 20{3}+12{5}+12{10}
Rhombicosahedron C+ 2 5/2 3|
6.4.6/5.4/3
Ri Ih W096 U56 K61 60 120 50 -10 30{4}+20{6}
Great icosicosidodecahedron C+ 3/2 5|3
6.3/2.6.5
Giid Ih W088 U48 K53 60 120 52 -8 20{3}+12{5}+20{6}

[edit] Nonconvex prismatic forms

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Pentagrammic prism P+ 2 5/2|2
5/2.4.4
Stip D5h -- U78 K03 10 15 7 2 5{4}+2{5/2}
Heptagrammic prism (7/3) P+ 2 7/3|2
7/3.4.4
Giship D7h -- -- -- 14 21 9 2 7{4}+2{7/3}
Heptagrammic prism (7/2) P+ 2 7/2|2
7/2.4.4
Ship D7h -- -- -- 14 21 9 2 7{4}+2{7/2}
Pentagrammic antiprism P+ |2 2 5/2
5/2.3.3.3
Stap D5h -- U79 K04 10 20 12 2 10{3}+2{5/2}
Pentagrammic crossed-antiprism P+ |2 2 5/3
5/3.3.3.3
Starp D5d -- U80 K05 10 20 12 2 10{3}+2{5/2}

[edit] Other nonconvex forms with nonconvex faces

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Small stellated dodecahedron R+ 5|2 5/2
(5/2)5
Sissid Ih W020 U34 K39 12 30 12 -6 12{5/2}
Great stellated dodecahedron R+ 3|2 5/2
(5/2)3
Gissid Ih W022 U52 K57 20 30 12 2 12{5/2}
Ditrigonal dodecadodecahedron S+ 3|5/3 5
(5/3.5)3
Ditdid Ih W080 U41 K46 20 60 24 -16 12{5}+12{5/2}
Small ditrigonal icosidodecahedron S+ 3|5/2 3
(5/2.3)3
Sidtid Ih W070 U30 K35 20 60 32 -8 20{3}+12{5/2}
Stellated truncated hexahedron S+ 2 3|4/3
8/3.8/3.3
Quith Oh W092 U19 K24 24 36 14 2 8{3}+6{8/3}
Great rhombihexahedron S+ 4/33/2 2|
4.8/3.4/3.8/5
Groh Oh W103 U21 K26 24 48 18 -6 12{4}+6{8/3}
Great cubicuboctahedron S+ 3 4|4/3
8/3.3.8/3.4
Gocco Oh W077 U14 K19 24 48 20 -4 8{3}+6{4}+6{8/3}
Great dodecahemidodecahedron S+ 5/35/2|5/3
10/3.5/3.10/3.5/2
Gidhid Ih W107 U70 K75 30 60 18 -12 12{5/2}+6{10/3}
Small dodecahemicosahedron S+ 5/35/2|3
6.5/3.6.5/2
Sidhei Ih W100 U62 K67 30 60 22 -8 12{5/2}+10{6}
Great dodecahemicosahedron S+ 5/4 5|3
6.5/4.6.5
Gidhei Ih W102 U65 K70 30 60 22 -8 12{5}+10{6}
Dodecadodecahedron S+ 2|5/2 5
(5/2.5)2
Did Ih W073 U36 K41 30 60 24 -6 12{5}+12{5/2}
Great icosihemidodecahedron S+ 3/2 3|5/3
10/3.3/2.10/3.3
Geihid Ih W106 U71 K76 30 60 26 -4 20{3}+6{10/3}
Great icosidodecahedron S+ 2|5/2 3
(5/2.3)2
Gid Ih W094 U54 K59 30 60 32 2 20{3}+12{5/2}
Cubitruncated cuboctahedron S+ 4/3 3 4|
8/3.6.8
Cotco Oh W079 U16 K21 48 72 20 -4 8{6}+6{8}+6{8/3}
Great truncated cuboctahedron S+ 4/3 2 3|
8/3.4.6
Quitco Oh W093 U20 K25 48 72 26 2 12{4}+8{6}+6{8/3}
Truncated great dodecahedron S+ 2 5/2|5
10.10.5/2
Tigid Ih W075 U37 K42 60 90 24 -6 12{5/2}+12{10}
Small stellated truncated dodecahedron S+ 2 5|5/3
10/3.10/3.5
Quitsissid Ih W097 U58 K63 60 90 24 -6 12{5}+12{10/3}
Great stellated truncated dodecahedron S+ 2 3|5/3
10/3.10/3.3
Quitgissid Ih W104 U66 K71 60 90 32 2 20{3}+12{10/3}
Truncated great icosahedron S+ 2 5/2|3
6.6.5/2
Tiggy Ih W095 U55 K60 60 90 32 2 12{5/2}+20{6}
Great dodecicosahedron S+ 5/35/2 3|
6.10/3.6/5.10/7
Giddy Ih W101 U63 K68 60 120 32 -28 20{6}+12{10/3}
Great rhombidodecahedron S+ 3/25/3 2|
4.10/3.4/3.10/7
Gird Ih W109 U73 K78 60 120 42 -18 30{4}+12{10/3}
Icosidodecadodecahedron S+ 5/3 5|3
6.5/3.6.5
Ided Ih W083 U44 K49 60 120 44 -16 12{5}+12{5/2}+20{6}
Small ditrigonal dodecicosidodecahedron S+ 5/3 3|5
10.5/3.10.3
Sidditdid Ih W082 U43 K48 60 120 44 -16 20{3}+12{;5/2}+12{10}
Great ditrigonal dodecicosidodecahedron S+ 3 5|5/3
10/3.3.10/3.5
Gidditdid Ih W081 U42 K47 60 120 44 -16 20{3}+12{5}+12{10/3}
Great dodecicosidodecahedron S+ 5/2 3|5/3
10/3.5/2.10/3.3
Gaddid Ih W099 U61 K66 60 120 44 -16 20{3}+12{5/2}+12{10/3}
Small icosicosidodecahedron S+ 5/2 3|3
6.5/2.6.3
Siid Ih W071 U31 K36 60 120 52 -8 20{3}+12{5/2}+20{6}
Rhombidodecadodecahedron S+ 5/2 5|2
4.5/2.4.5
Raded Ih W076 U38 K43 60 120 54 -6 30{4}+12{5}+12{5/2}
Uniform great rhombicosidodecahedron S+ 5/3 3|2
4.5/3.4.3
Qrid Ih W105 U67 K72 60 120 62 2 20{3}+30{4}+12{5/2}
Snub dodecadodecahedron S+ |2 5/2 5
3.3.5/2.3.5
Siddid I W111 U40 K45 60 150 84 -6 60{3}+12{5}+12{5/2}
Inverted snub dodecadodecahedron S+ |5/3 2 5
3.5/3.3.3.5
Isdid I W114 U60 K65 60 150 84 -6 60{3}+12{5}+12{5/2}
Great snub icosidodecahedron S+ |2 5/2 3
3.4.5/2
Gosid I W116 U57 K62 60 150 92 2 (20+60){3}+12{5/2}
Great inverted snub icosidodecahedron S+ |5/3 2 3
3.3.5/3
Gisid I W113 U69 K74 60 150 92 2 (20+60){3}+12{5/2}
Great retrosnub icosidodecahedron S+ |3/25/3 2
(34.5/2)/2
Girsid I W117 U74 K79 60 150 92 2 (20+60){3}+12{5/2}
Great snub dodecicosidodecahedron S+ |5/35/2 3
33.5/3.3.5/2
Gisdid I W115 U64 K69 60 180 104 -16 (20+60){3}+(12+12){5/2}
Snub icosidodecadodecahedron S+ |5/3 3 5
3.3.5.5/3
Sided I W112 U46 K51 60 180 104 -16 (20+60){3}+12{5}+12{5/2}
Small snub icosicosidodecahedron S+ |5/2 3 3
35.5/2
Seside Ih W110 U32 K37 60 180 112 -8 (40+60){3}+12{5/2}
Small retrosnub icosicosidodecahedron S+ |3/23/25/2
(35.5/3)/2
Sirsid Ih W118 U72 K77 60 180 112 -8 (40+60){3}+12{5/2}
Great dirhombicosidodecahedron S+ |3/25/3 3

5/2


(4.5/3.4.3.
4.5/2.4.3/2)/2
Gidrid Ih W119 U75 K80 60 240 124 -56 40{3}+60{4}+24{5/2}
Icositruncated dodecadodecahedron S+ 5/3 3 5|
10/3.6.10
Idtid Ih W084 U45 K50 120 180 44 -16 20{6}+12{10}+12{10/3}
Truncated dodecadodecahedron S+ 5/3 2 5|
10/3.4.10
Quitdid Ih W098 U59 K64 120 180 54 -6 30{4}+12{10}+12{10/3}
Great truncated icosidodecahedron S+ 5/3 2 3|
10/3.4.6
Gaquatid Ih W108 U68 K73 120 180 62 2 30{4}+20{6}+12{10/3}

[edit] Special case

Name Picture Solid
class
Wythoff
symbol
Vertex figure Bowers-style
acronym
Symmetry
group
W# U# K# Vertices Edges Faces Chi Faces by type
Great disnub dirhombidodecahedron
Skilling's figure
S++ | (3/2) 5/3 (3) 5/2
(5/2.4.3.3.3.4. 5/3.4.3/2.3/2.3/2.4)/2
-- Ih -- -- -- 60 240 (*1) 204 24 120{3}+60{4}+24{5/2}

(*1) : The Great disnub dirhombidodecahedron has 120 edges shared by four faces. If counted as two pairs, then there are a total 360 edges. Because of this edge-degeneracy, it is not always considered a uniform polyhedron.

[edit] Column key

  • Solid classes
  • Bowers style acronym - A unique pronounceable abbreviated name created by mathematician Jonathan Bowers
  • Uniform indexing: U01-U80 (Tetrahedron first, Prisms at 76+)
  • Kaleido indexing: K01-K80 <K(n)=U(n-5) for n=6..80> (prisms 1-5, Tetrahedron 6+)
  • Magnus Wenninger Polyhedron Models: W001-W119
    • 1-18 - 5 convex regular and 13 convex semiregular
    • 20-22, 41 - 4 non-convex regular
    • 19-66 Special 48 stellations/compounds (Nonregulars not given on this list)
    • 67-119 - 53 non-convex uniform
  • Chi: the Euler characteristic, χ. Uniform tilings on the plane correspond to a torus topology, with Euler characteristic of zero.
  • For the plane tilings, the numbers given of vertices, edges and faces show the ratio of such elements in one period of the pattern, which in each case is a rhombus (sometimes a right-angled rhombus, i.e. a square).
  • Note on Vertex figure images:
    • The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations. Some of the intersecting faces are drawn visually incorrectly because they are not properly intersected visually to show which portions are in front.

[edit] Reference

[edit] External links

In other languages