List of operators
From Wikipedia, the free encyclopedia
In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.
In the following L is an operator
which takes a function to another function . Here, and are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.
Expression | Curve definition |
Variables | Description |
---|---|---|---|
Linear transformations | |||
Derivative of n-th order | |||
Cartesian | y = y(x) x = t |
Integral, area | |
Composition operator | |||
Even component | |||
Odd component | |||
Sturm-Liouville operator | |||
Laplace transform | |||
Fourier transform | |||
Mellin transform | |||
Abel transform | |||
Inverse Abel transform | |||
Hartley transform | |||
Non-linear transformations | |||
Inverse function | |||
Legendre transformation | |||
Left composition | |||
Logarithmic derivative | |||
Total variation | |||
Mean value | |||
Geometric mean value | |||
Cartesian | y = y(x) x = t |
Subtangent | |
Parametric Cartesian |
x = x(t) y = y(t) |
||
Polar | y = r(φ) φ = t |
||
Polar | y = r(φ) φ = t |
Area | |
Cartesian | y = y(x) x = t |
Arc length | |
Parametric Cartesian |
x = x(t) y = y(t) |
||
Polar | y = r(φ) φ = t |
||
Cartesian | y = y(x) x = t |
Curvature | |
Parametric Cartesian |
x = x(t) y = y(t) |
||
Polar | y = r(φ) φ = t |
||
Parametric Cartesian |
x = x(t) y = y(t) z = z(t) |
||
Parametric Cartesian |
x = x(t) y = y(t) |
Affine curvature | |
Parametric Cartesian |
x = x(t) y = y(t) z = z(t) |
Torsion of curves | |
Parametric Cartesian |
x = x(t) y = y(t) |
Dual curve (tangent coordinates) |
|
Parametric Cartesian |
x = x(t) y = y(t) |
Parallel curve | |
Cartesian | y = y(x) x = t |
Evolute | |
Parametric Cartesian |
x = x(t) y = y(t) |
||
Intrinsic | y = r(s) s = t |
||
Parametric Cartesian |
x = x(t) y = y(t) |
Involute | |
Parametric Cartesian |
x = x(t) y = y(t) |
Pedal curve with pedal point (0;0) | |
Parametric Cartesian |
x = x(t) y = y(t) |
Negative pedal curve with pedal point (0;0) | |
Intrinsic | y = r(s) s = t |
Intrinsic to Cartesian transformation |
|
Metric functionals | |||
Norm | |||
Inner product | |||
Fubini-Study metric (inner angle) |
|||
Distribution functionals | |||
Convolution | |||
Differential entropy | |||
Expected value | |||
Variance |