List of large cardinal properties

From Wikipedia, the free encyclopedia

This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, V(κ) satisfies "there are unboundedly many cardinals satisfying φ".

[edit] References

    • Drake, F. R. (1974). Set Theory: An Introduction to Large Cardinals (Studies in Logic and the Foundations of Mathematics ; V. 76). Elsevier Science Ltd. ISBN 0-444-10535-2. 
    • Kanamori, Akihiro (2003). The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings, 2nd ed, Springer. ISBN 3-540-00384-3. 
    • Solovay, Robert M.; William N. Reinhardt, and Akihiro Kanamori (1978). "Strong axioms of infinity and elementary embeddings". Annals of Mathematical Logic 13 (1): 73–116. 
    In other languages