User:Linas/Mangoldt
From Wikipedia, the free encyclopedia
This note intended for User:Dantheox. The code below can compute the von Mangoldt function up to n=10 million in under a minute of cpu time, and higher with some patience (and/or a faster machine). I wrote it for my personal use only, its under-documented and not really meant for general consumption. Should compile cleanly.
I no longer receive personal e-mail due to spam problems. I get more then 10K pieces of spam a day, and the best spam filters are not good enough to whittle this down to less than 10.
Ask if you have questions. --linas
linas@backlot: /home/linas/linas/fractal/tools/src/libs/farey %cat moebius.h
/*
* moebius.h * * Return the moebius function of an integer. * not intended for large integers, works only for small integers * due to poor-mans factorization algo. * * Linas Vepstas Jaunuary 2005 */
- ifdef __cplusplus
extern "C" {
- endif
/** classic Moebius mu function */ int moebius_mu (int n);
/** Mertens function, summatory function of mu */ int mertens_m (int n);
/** The number of prime factors of a number */ int liouville_omega (int n);
/** The Liouville lambda function */ int liouville_lambda (int n);
/** The von Mangoldt Lambda function
* Returns von Mangoldt Lambda for n, which is * log(p) if n is a power of prime p, otherwise * returns zero. */
long double mangoldt_lambda (int n); long double mangoldt_lambda_cached (int n);
/** The indexed von Mangoldt Lambda function
* Returns the n'th non-zero von Mangoldt value * */
long double mangoldt_lambda_indexed (int n); unsigned int mangoldt_lambda_index_point (int n);
- ifdef __cplusplus
};
- endif
linas@backlot: /home/linas/linas/fractal/tools/src/libs/farey %cat moebius.c
/*
* moebius.c * * Return the moebius function of an integer. * not intended for large integers, works only for small integers * due to poor-mans factorization algo. * * Linas Vepstas Jaunuary 2005 */
- include <math.h>
- include <malloc.h>
- include "moebius.h"
- include "cache.h"
static int *sieve = NULL; static int sieve_size = 0; static int sieve_max = 0;
- define INIT_PRIME_SIEVE(N) \
if (!sieve || sieve[sieve_max]*sieve[sieve_max] <(N)) {\ init_prime_sieve(N); \ }
/* Initialize and fill in a prime-number sieve */ static void init_prime_sieve (int prod) {
int n, j; int nstart; int pos;
if (sieve && sieve[sieve_max]*sieve[sieve_max] > prod) return;
int max = 1000.0+sqrt (prod);
if (!sieve) { sieve = (int *) malloc (8192*sizeof (int)); sieve_size = 8192; sieve_max = 2; sieve[0] = 2; sieve[1] = 3; sieve[2] = 5; } pos = sieve_max+1; nstart = sieve[sieve_max] + 2;
/* dumb algo, brute-force test all odd numbers against known primes */ for (n=nstart; n<=max; n+=2) { for (j=1; ; j++) { int p = sieve[j]; if (0 == n%p) { break; } if (p*p > n) { /* If we got to here, n must be prime; save it, move on. */ sieve[pos] = n; pos ++; if (pos >= sieve_size) { sieve_size += 8192; sieve = (int *)realloc (sieve, sieve_size * sizeof (int)); } break; } } } sieve_max = pos-1;
- if 0
for (j=0; j<pos; j++) { printf ("its %d %d\n", j, sieve[j]); }
- endif
}
/* ====================================================== */
int moebius_mu (int n) {
if (1 >= n) return 1; if (3 >= n) return -1;
INIT_PRIME_SIEVE(n);
/* Implement the dumb/simple moebius algo */ int cnt = 0; int i; for (i=0; ; i++) { int k = sieve[i]; if (0 == n%k) { cnt ++; n /= k;
/* If still divisible, its a square */ if (0 == n%k) return 0; }
if (1 == n) break; if (k*k > n) { cnt ++; break; } }
if (0 == cnt%2) return 1; return -1;
}
/* ====================================================== */
long double mangoldt_lambda (int n) {
if (1 >= n) return 0.0L;
INIT_PRIME_SIEVE(n);
/* Implement the dumb/simple factorization algo */ int i; for (i=0; ; i++) { int k = sieve[i]; if (0 == n%k) { n /= k; while (0 == n%k) n /= k;
if (1 == n) return logl ((long double)k); return 0.0L; } if (k*k > n) return logl ((long double) n); }
return 0.0L;
}
/* ====================================================== */
long double mangoldt_lambda_cached (int n) {
DECLARE_LD_CACHE (mangoldt_cache); if(ld_one_d_cache_check (&mangoldt_cache, n)) { return ld_one_d_cache_fetch(&mangoldt_cache, n); } else { long double val = mangoldt_lambda(n); ld_one_d_cache_store (&mangoldt_cache, val, n); return val; }
}
/* ====================================================== */
DECLARE_LD_CACHE (mangoldt_idx_cache); DECLARE_UI_CACHE (mangoldt_pow_cache); static int man_last_val =1; static int man_last_idx =0;
long double mangoldt_lambda_indexed (int n) {
if(ld_one_d_cache_check (&mangoldt_idx_cache, n)) { return ld_one_d_cache_fetch(&mangoldt_idx_cache, n); } else { ui_one_d_cache_check (&mangoldt_pow_cache, n); while (1) { man_last_val++; long double val = mangoldt_lambda(man_last_val); if (val != 0.0L) { man_last_idx++; ld_one_d_cache_store (&mangoldt_idx_cache, val, man_last_idx); ui_one_d_cache_store (&mangoldt_pow_cache, man_last_val, man_last_idx); if (n == man_last_idx) return val; } } }
}
unsigned int mangoldt_lambda_index_point (int n) {
if(ui_one_d_cache_check (&mangoldt_pow_cache, n)) { return ui_one_d_cache_fetch(&mangoldt_pow_cache, n); } else { ld_one_d_cache_check (&mangoldt_idx_cache, n); while (1) { man_last_val++; long double val = mangoldt_lambda(man_last_val); if (val != 0.0L) { man_last_idx++; ld_one_d_cache_store (&mangoldt_idx_cache, val, man_last_idx); ui_one_d_cache_store (&mangoldt_pow_cache, man_last_val, man_last_idx); if (n == man_last_idx) return man_last_val; } } }
}
/* ====================================================== */
int mertens_m (int n) {
int i; int acc = 0; for (i=1; i<=n; i++) { acc += moebius_mu (i); } return acc;
}
/* ====================================================== */ /* count the number of prime factors of n */
int liouville_omega (int n) {
int i; int acc = 2;
if (1 >= n) return 1; if (2 >= n) return 2;
INIT_PRIME_SIEVE(n);
i=0; while (1) { int d = sieve[i]; if (0 == n%d) { acc ++; n /= d; } else { i++; } if (d*d > n) break; }
return acc;
}
int liouville_lambda (int n) {
int omega = liouville_omega (n);
if (0 == omega%2) return 1; return -1;
}
/* ====================================================== */
// #define TEST 1
- ifdef TEST
int test_moebius(void) {
int n;
int have_error = 0; int nmax = 40000; for (n=1; n<nmax; n++) { /* Perform a Dirichlet sum */ int sum = 0; int d; for (d=1; ; d++) { if (2*d > n) break; if (n%d) continue; sum += moebius_mu (d); // printf ("%d divides %d and sum=%d\n", d, n, sum); } if (1 != n) sum += moebius_mu (n); if (0 != sum) { printf ("ERROR for moebius mu at n=%d sum=%d \n", n, sum); have_error ++; } } if (0 == have_error) { printf ("PASS: tested moebius function w/ dirichlet up to %d\n", nmax); } return have_error;
}
int test_omega(void) {
int n;
int have_error = 0; int nmax = 40000; for (n=1; n<nmax; n++) { /* Perform a Dirichlet sum */ int sum = 0; int d; for (d=1; ; d++) { if (2*d > n) break; if (n%d) continue; sum += liouville_lambda (d); // printf ("%d divides %d and sum=%d\n", d, n, sum); } if (1 != n) sum += liouville_lambda (n);
if (0 == sum) continue;
int ns = sqrt (n); if (ns*ns != n) { printf ("ERROR at liouville lambda at n=%d sum=%d \n", n, sum); have_error ++; } } if (0 == have_error) { printf ("PASS: tested liouville omega function w/ dirichlet up to %d\n", nmax); } return have_error;
}
int main() {
test_omega (); test_moebius ();
}
- endif
linas@backlot: /home/linas/linas/fractal/tools/src/libs/farey %
linas@backlot: /home/linas/linas/fractal/tools/src/libs/farey %cat cache.h
/* cache.h
* Generic cache management for commonly computed numbers * * Linas Vepstas 2005,2006 */
/* ======================================================================= */ /* Cache management */
typedef struct {
unsigned int nmax; long double *cache; char *ticky; short disabled;
} ld_cache;
- define DECLARE_LD_CACHE(name) \
static ld_cache name = {.nmax=0, .cache=NULL, .ticky=NULL, .disabled = 0}
/** ld_one_d_cache_check() -- check if long double value is in the cache
* Returns true if the value is in the cache, else returns false. * This assumes a 1-dimensional cache layout (simple aray) */
int ld_one_d_cache_check (ld_cache *c, unsigned int n);
/**
* ld_one_d_cache_fetch - fetch value from cache */
long double ld_one_d_cache_fetch (ld_cache *c, unsigned int n);
/**
* ld_one_d_cache_store - store value in cache */
void ld_one_d_cache_store (ld_cache *c, long double val, unsigned int n);
/* ======================================================================= */ /* Cache management */
typedef struct {
unsigned int nmax; unsigned int *cache; char *ticky; short disabled;
} ui_cache;
- define DECLARE_UI_CACHE(name) \
static ui_cache name = {.nmax=0, .cache=NULL, .ticky=NULL, .disabled = 0}
/** ui_one_d_cache_check() -- check if long double value is in the cache
* Returns true if the value is in the cache, else returns false. * This assumes a 1-dimensional cache layout (simple aray) */
int ui_one_d_cache_check (ui_cache *c, unsigned int n);
/**
* ui_one_d_cache_fetch - fetch value from cache */
unsigned int ui_one_d_cache_fetch (ui_cache *c, unsigned int n);
/**
* ui_one_d_cache_store - store value in cache */
void ui_one_d_cache_store (ui_cache *c, unsigned int val, unsigned int n);
linas@backlot: /home/linas/linas/fractal/tools/src/libs/farey %cat cache.c
/* cache.c
* Generic cache management for commonly computed numbers * * Linas Vepstas 2005,2006 */
- include <stdlib.h>
- include "cache.h"
/* =============================================================== */ /** TYPE_NAME##_d_cache_check() -- check if long double value is in the cache
* Returns true if the value is in the cache, else returns false. * This assumes a 1-dimensional cache layout (simple aray) */
- define CACHE_CHECK(TYPE_NAME,TYPE) \
int TYPE_NAME##_one_d_cache_check (TYPE_NAME##_cache *c, unsigned int n) \{ \
if (c->disabled) return 0; \ if ((n > c->nmax) || 0==n ) \ { \ unsigned int newsize = 1.5*n+1; \ c->cache = (TYPE *) realloc (c->cache, newsize * sizeof (TYPE))\ c->ticky = (char *) realloc (c->ticky, newsize * sizeof (char))\ \ unsigned int en; \ unsigned int nstart = c->nmax+1; \ if (0 == c->nmax) nstart = 0; \ for (en=nstart; en <newsize; en++) \ { \ c->cache[en] = 0.0L; \ c->ticky[en] = 0; \ } \ c->nmax = newsize-1; \ return 0; \ } \ \ return (c->ticky[n]); \
}
/**
* TYPE_NAME##_d_cache_fetch - fetch value from cache */
- define CACHE_FETCH(TYPE_NAME,TYPE) \
TYPE TYPE_NAME##_one_d_cache_fetch (TYPE_NAME##_cache *c, unsigned int n) \{ \
if (c->disabled) return 0.0L; \ return c->cache[n]; \
}
/**
* TYPE_NAME##_d_cache_store - store value in cache */
- define CACHE_STORE(TYPE_NAME,TYPE) \
void TYPE_NAME##_one_d_cache_store (TYPE_NAME##_cache *c, TYPE val, unsigned int n) \ { \
if (c->disabled) return; \ c->cache[n] = val; \ c->ticky[n] = 1; \
}
/* =============================================================== */
- define DEFINE_CACHE(TYPE_NAME,TYPE) \
CACHE_CHECK(TYPE_NAME,TYPE) \ CACHE_FETCH(TYPE_NAME,TYPE) \ CACHE_STORE(TYPE_NAME,TYPE)
DEFINE_CACHE(ld, long double) DEFINE_CACHE(ui, unsigned int)
linas@backlot: /home/linas/linas/fractal/tools/src/libs/farey %
linas@backlot: /home/linas/linas/fractal/misc/num-theory %cat series.c
/*
* series.c * * Graphs of maclaurin series of totient and other number-theoretic * arithmetic series. These are ordinary x-y plots; output is * ascii list of x-y values * * Linas Vepstas December 2004 */
- include <complex.h>
- include <math.h>
- include <stdio.h>
- include "divisor.h"
- include "gcf.h"
- include "moebius.h"
- include "totient.h"
long double totient_series (long double x) {
long double acc = 0.0;
long double xp = 1.0; int n=1; while (1) { long double term = xp * totient_phi (n); acc += term;
if (term < 1.0e-20*acc) break; xp *= x; n++; }
return acc;
}
// return the limit as the totient sum goes to x-> 1 void limit (void) {
long double p = 0.5L; long double prev = 0.0; int i=1; while (1) { long double x = 1.0L - p;
long double y = totient_series (x); y *= p*p;
long double guess = y + (y-prev)/3.0L; printf ("%d %Lg %26.18Lg %26.18Lg\n", i, x, y, guess);
p *= 0.5L; i++; prev = y; }
}
long double divisor_series (long double x) {
long double acc = 0.0;
long double xp = 1.0; int n=1; while (1) { long double term = xp * divisor (n); acc += term;
if (term < 1.0e-20*acc) break; xp *= x; n++; }
return acc;
}
long double c_divisor_series (long double x) {
long double complex acc = 0.0;
long double complex xi = x*I; long double complex xp = x*I; int n=1; while (1) { long double complex term = xp * divisor (n); acc += term;
if (cabsl(term) < 1.0e-20*cabsl(acc)) break; xp *= xi; n++; }
return cabsl (acc);
}
long double c_erdos_series (long double x) {
long double complex acc = 0.0;
long double complex xi = x*I; long double complex xp = x*I; while (1) { long double complex term = xp / (1.0L-xp); acc += term;
if (cabsl(term) < 1.0e-20*cabsl(acc)) break; xp *= xi; }
return cabsl(acc);
}
long double erdos_series (long double x) {
long double acc = 0.0;
long double xp = x; while (1) { // long double term = xp / (1.0L-xp); long double term = 1.0L/(xp * (xp-1.0L)); acc += term;
if (term < 1.0e-20*acc) break; xp *= x; }
return acc;
}
long double z_erdos_series (long double x) {
long double acc = 0.0;
long double tk = 0.5L; long double xp = x; while (1) { long double term = xp / (1-tk); acc += term;
if (term < 1.0e-20*acc) break; xp *= x; tk *= 0.5L; }
return acc;
}
long double moebius_series (long double x) {
long double acc = 0.0;
long double xp = 1.0; int n=1; while (1) { long double term = xp * moebius_mu (n); acc += term;
if (xp < 1.0e-18) break; xp *= x; n++; }
return acc;
}
long double mangoldt_series (long double y) {
long double acc = 0.0;
long double x = expl (-y); long double xp = x*x; int n=2; while (1) { long double term = xp * (mangoldt_lambda_cached(n) - 1.0); acc += term; // printf ("pnt=%d term=%Lg acc=%Lg\n", n, term, acc);
if (fabs(term) < 1.0e-16*fabs(acc)) break; xp *= x; n++; }
return -acc;
}
long double mangoldt_idx_series (long double y) {
long double acc = 0.0L;
long double x = expl (-y); long double ox = x/(1.0L-x); // printf ("y=%Lg x=%Lg ox=%Lg\n", y,x,ox); long double last_xp = 0.0; int n=1; unsigned int pnt; unsigned int last_pnt=2; while (1) { pnt = mangoldt_lambda_index_point (n); long double xp = expl (-y*pnt); long double term = mangoldt_lambda_indexed(n); term = xp * term; // printf ("index=%d pnt=%d term=%Lg acc=%Lg\n", n, pnt, term, acc); acc += term; if (fabs(term) < 1.0e-16*fabs(acc)) break;
if (2 == pnt) { acc -= xp; last_xp = xp; } else { // term = expl(-y*(pnt-last_pnt)); term=1.0L; int i; for (i=0; i<pnt-last_pnt; i++) { term *= x; } term = 1.0L - term; term *= last_xp*ox; acc -= term; //printf ("---dex=%d last_xp=%Lg term=%Lg acc=%Lg\n", n, last_xp, term, acc); last_xp = xp; } last_pnt = pnt; n++; } fprintf (stderr, "last index=%d pnt=%d\n", n, pnt);
return -acc;
}
int main () {
int i;
int nmax = 410;
long double tp = 0.5; // for (i=1; i<=nmax; i++) for (i=nmax; i>0; i--) { long double x = ((double) i)/((double) nmax);
// #define TOTIENT_SERIES
- ifdef TOTIENT_SERIES
long double y = totient_series (x); y *= (1.0L-x)*(1.0L-x); long double z = 0.607927101 * sin (0.5*M_PI*x);
long double r = 2.0L*(y/z - 1.0L); printf ("%d %Lg %26.18Lg %26.18Lg %26.18Lg\n", i, x, y, z,r);
- endif
// #define DIVISOR_SERIES
- ifdef DIVISOR_SERIES
x = 1.0L-tp; long double y = divisor_series (x); // y *= (1.0L-x)*(1.0L-x); y *= tp;
printf ("%d %Lg %26.18Lg\n", i, x, y);
- endif
// #define C_DIVISOR_SERIES
- ifdef C_DIVISOR_SERIES
long double y = c_divisor_series (x); long double z = c_erdos_series (x);
printf ("%d %Lg %26.18Lg %26.18Lg %26.18Lg\n", i, x, y, z, y-z);
- endif
// #define ERDOS_SERIES
- ifdef ERDOS_SERIES
long double y = z_erdos_series (x); y *= (1.0L-x);
printf ("%d %Lg %26.18Lg\n", i, x, y);
- endif
// #define MOEBIUS_SERIES
- ifdef MOEBIUS_SERIES
long double y = moebius_series (x);
printf ("%d %Lg %26.18Lg\n", i, x, y); fflush (stdout);
- endif
- define MANGOLDT_SERIES
- ifdef MANGOLDT_SERIES
x *= 0.000001; // long double y = mangoldt_series (x); long double y = mangoldt_idx_series (x); y -= 0.337877; y += 0.898*x;
printf ("%d %Lg %26.18Lg\n", i, x, y); fflush (stdout);
- endif
tp *= 0.5L; }
} linas@backlot: /home/linas/linas/fractal/misc/num-theory %