Lethal injection
From Wikipedia, the free encyclopedia
- This article is about the execution method. For the Ice Cube album, see Lethal Injection (album).
Lethal injection involves injecting a person with fatal doses of drugs to cause death. The main applications are euthanasia and capital punishment. This article focuses on the latter.
As a method for capital punishment, it gained popularity in the twentieth century as form of execution meant to supplant methods – such as electrocution, hanging, firing squad, gas chamber, or decapitation – that were considered to be less humane. The humaneness of lethal injection has been debated. (See "Controversy," below.) It is now the most common form of execution in the United States: every American execution in 2005 was conducted by lethal injection.[1]
Lethal injection has also been used in euthanasia to facilitate death in patients with terminal or chronically painful conditions. Both applications have used similar drug combinations.[2]
Contents |
[edit] History
The concept of lethal injection was first proposed in 1888 by Julius Mount Bleyer,[3] a New York doctor who praised it as being cheaper and more humane than hanging.[4] Bleyer's idea, however, was never used. The British Royal Commission on Capital Punishment (1949–53) also considered lethal injection, but eventually rejected it after pressure from the British Medical Association (BMA).[4]
In 1977, Jay Chapman, Oklahoma's state medical examiner, proposed a new, 'more humane' method of execution: "An intravenous saline drip shall be started in the prisoner's arm, into which shall be introduced a lethal injection consisting of an ultra-short-acting barbiturate in combination with a chemical paralytic."[5] After being approved by anesthesiologist Stanley Deutsch, the method was adopted by Oklahoma (Title 22, Section 1014(A)). Since then, thirty-seven of the thirty-eight states using capital punishment have introduced lethal injection statutes.[5] (The sole exception is Nebraska, which continues to electrocute the condemned.) On 7 December 1982, Texas became the first state to use lethal injection as a capital punishment for the execution of Charles Brooks, Jr..[6]
The People's Republic of China began using this method in 1997, Guatemala in 1998, and the Philippines in 1999; multiple other countries have also legally, but not practically adopted the method.
Nazi Germany's T-4 Euthanasia Program used lethal injection (with drugs that differed from the modern method) as one of several methods to destroy "life unworthy of life."[7]
Execution by nitrogen asphyxiation was proposed in 1995 as an alternative to lethal injection and appears occasionally in online discussions, but as of 2007 is not used by any nation.
[edit] Procedure in US executions
After the condemned is fastened on the execution table, two intravenous cannulae ("drips") are inserted, one in each arm. Only one is used for the execution; the other is reserved as a backup in case the primary line fails.
The arm of the subject is swabbed with alcohol before the cannula is inserted. [2] The needles and equipment used are also sterilized. One reason for this is that cannulae are standard medical products that are sterilized during manufacture. Secondly, there is a chance that the prisoner could receive a stay of execution after the cannulae have been inserted, as happened in the case of James Autry in October 1983 (he was executed eventually on March 14, 1984). Finally, it would also be a hazard for those handling unsterile equipment.
The intravenous injection is usually a sequence of compounds, designed to induce rapid unconsciousness followed by death through paralysis of respiratory muscles and/or by inducing cardiac arrest through depolarization of cardiac muscle cells. The execution of the condemned in most states involves three separate injections:
- Sodium thiopental: to induce a state of unconsciousness intended to last while the other two injections take effect.
- Pancuronium/Tubocurarine: to stop all muscle movement except the heart. This causes muscle paralysis, collapse of the diaphragm, and would eventually cause death by asphyxiation.
- Potassium chloride: to stop the heart from beating, and thus cause death: see cardiac arrest.
The drugs are not mixed externally as that can cause them to precipitate.
The intravenous tubing leads to a room next to the execution chamber, usually separated from the subject by a curtain or wall. Typically a technician trained in venepuncture inserts the cannulae, while a second technician, who is usually a member of the prison staff, orders, prepares, and loads the drugs into an infusion pump. After the curtain is opened to allow the witnesses to see inside the chamber, the condemned person will then be permitted to make a final statement. Following this, the warden will signal for the execution to commence, and the executioner(s) (either prison staff or private citizens depending on the jurisdiction) will then activate the infusion pump which mechanically delivers the three drugs in sequence. During the execution, the subject's cardiac rhythm is monitored. Death is pronounced after cardiac activity stops. Death usually occurs within seven minutes, although the whole procedure can take up to 45 minutes. According to state law, if participation in the execution is prohibited for physicians, the death ruling is made by the state's Medical Examiner's Office. After confirmation that death has occurred, a coroner signs the executed individual’s death certificate.
[edit] Lethal injection drugs
The following drugs are a representation of a typical lethal injection cocktail as practised in the United States for capital punishment.
[edit] Sodium thiopental
- Lethal Injection dosage: 5 grams
Sodium thiopental (US trade name: Sodium Pentothal) is an ultra-short acting barbiturate, often used for anesthesia induction and for medically induced coma. The typical anesthesia induction dose is 3-5 mg/kg (a person who weighs 200 pounds, or 91 kilograms, would get a dose of about 300 mg). Loss of consciousness is induced within 30-45 seconds at the typical dose, while a 5 gram dose - 14 times the normal dose - is likely to induce unconsciousness in 10 seconds.
Thiopental reaches the brain within seconds and attains a peak brain concentration of about 60% of the total dose in about 30 seconds. At this level, the subject is unconscious. Within 5 to 20 minutes the percentage in the brain falls to about 15% of the total dose, since the drug redistributes to the rest of the body. At this concentration in the brain, the anesthetic effects wear off and consciousness returns. These are the typical pharmacokinetics for the induction dose.
The half-life of this drug is about 11.5 hours[3], and the concentration in the brain remains at around 5-10% of the total dose during that time. When a 'mega-dose' is administered, as in lethal injection, the concentration in the brain during the tail phase of the distribution remains higher than the peak concentration found in the induction dose for anesthesia. This is the reason why an ultra-short acting barbiturate, such as thiopental, can be used for long-term induction of medical coma.
After a 5 gram dose consciousness will be regained in about 5 to 6 half-lives, which occurs in about 57-69 hours. The effects of such a high dose, however, include profound respiratory depression (depression of the brainstem respiratory center) and vascular collapse (vasodilatation and myocardial depression), which is in itself lethal.
Historically thiopental has been one of the most commonly used and studied drugs for the induction of coma. Protocols vary with how the medication is given, but the typical doses are anywhere from 500 mg up to 1.5 grams. It is likely that these data were used to develop the initial protocols for lethal injection of giving 1 gram of thiopental to induce the coma. Now, most states use 5 grams to be absolutely certain about its effectiveness.
Barbiturates are the same class of drugs used in medically assisted suicide. In euthanasia protocols, the typical dose of thiopental is 20 mg/kg[4] and a 91 kilogram man would receive 1.82 grams. The lethal injection dose used in capital punishment is therefore about 3 times more than the dose used in euthanasia.
[edit] Pancuronium bromide
- Lethal Injection dosage: 100 milligrams
Pancuronium bromide (Trade name: Pavulon) is a non-depolarizing muscle relaxant (a paralytic agent) that blocks the action of acetylcholine at the motor end-plate of the neuromuscular junction. Binding of acetylcholine to receptors on the end-plate causes depolarization and contraction of the muscle fibre; non-depolarizing neuromuscular blocking agents like pancuronium stop this binding from taking place.
The typical dose for pancuronium bromide is 0.1 mg/kg (a person who weighs 200 pounds, or 91 kilograms, would get a dose of around 9mg). With a 100 milligram dose, the onset of paralysis occurs in around 15 to 30 seconds, and the duration of paralysis is around 4 to 8 hours. Paralysis of respiratory muscles will lead to death in a considerably shorter time.
Pancuronium bromide is a derivative of the alkaloid malouetine from the plant Malouetia bequaertiana. [5]
[edit] Potassium chloride
- Lethal Injection dosage: 100 mEq (milliequivalents)
Potassium is an electrolyte that is 98% within the cells. The 2% remaining outside of the cell has great implications for cells that generate action potentials. Typically, doctors give patients potassium when there is insufficient potassium, called hypokalemia, in the blood. The potassium can be given orally, which is the safest route; or it can be given intravenously, in which case there are strict rules and hospital protocols on the rate at which it is given.
The usual intravenous dose is 10-20 mEq per hour and it is given slowly since it takes time for the electrolyte to equilibrate into the cells. When used in lethal injection, bolus potassium injection affects the electrical conduction of heart muscle. Elevated potassium, or hyperkalemia, causes the resting electrical activity of the heart muscle to be higher than normal.
Depolarizing the muscle cell inhibits its ability to fire by reducing the available number of Na channels (they are placed in an inactivated state). EKG changes include faster repolarization (peaked T-waves), PR interval prolongation, widening of the QRS, and eventual sine-wave formation and asystole. The heart eventually stops in diastole. Cases of patients dying from hyperkalemia (usually secondary to renal failure) are well known in the medical community, where patients have been known to die very rapidly, having previously seemed to be normal.
[edit] Euthanasia protocol
Euthanasia can be accomplished either through oral, intravenous, or intramuscular administration of drugs. In individuals who are incapable of swallowing lethal doses of medication, an intravenous route is preferred. The following is a Dutch protocol for parenteral (intravenous) administration to obtain euthanasia, with the old protocol listed first and the new protocol listed second:
- First a coma is induced by intravenous administration of 1 g thiopental sodium (Nesdonal®), if necessary, 1.5-2 g of the product in case of strong tolerance to barbiturates. Then 45 mg alcuronium chloride (Alloferin®) or 18 mg pancuronium bromide (Pavulon®) is injected. In order to ensure optimal availability, these agents are preferably given intravenously. However, there are substantial indications that they can also be injected intramuscularly. In severe hepatitis or cirrhosis of the liver, alcuronium is the agent of first choice.[6]
- Intravenous administration is the most reliable and rapid way to accomplish euthanasia and therefore can be safely recommended. A coma is first induced by intravenous administration of 20 mg/kg thiopental sodium in a small volume (10 ml physiological saline). Then a triple intravenous dose of a non-depolarizing neuromuscular muscle relaxant is given, such as 20 mg pancuronium bromide or 20 mg vecuronium bromide (Norcuron®). The muscle relaxant should preferably be given intravenously, in order to ensure optimal availability. Only for pancuronium dibromide are there substantial indications that the agent may also be given intramuscularly in a dosage of 40 mg.[7]
[edit] Constitutionality in the United States
The Supreme Court has never ruled that any specific form of execution has violated the Eighth Amendment clause prohibiting cruel and unusual punishment. In Hill v. Crosby, decided June 12, 2006, the Supreme Court ruled that death-row inmates in the United States may challenge protocols used in the lethal injection process as potentially violating the Eighth Amendment's "cruel and unusual" punishment clause outside of a petition for a writ of habeas corpus. Clarence Hill had already exhausted all of his legal appeals through habeas corpus and filed a lawsuit claiming that lethal injection was a civil rights issue. The Supreme Court, in this ruling, did not decide whether lethal injection as currently practiced in the United States constitutes cruel and unusual punishment. [8] [9] [10]
[edit] Ethics of lethal injection
The American Medical Association believes that a physician's opinion on capital punishment is a personal decision. Since the AMA is founded on preserving life, they argue that a doctor "should not be a participant" in executions in any form with the exception of "certifying death, provided that the condemned has been declared dead by another person."[11] Amnesty International argues that the AMA's position effectively "prohibits doctors from participating in executions." [12] The AMA, though, does not have the authority to prohibit doctors from participation in lethal injection, nor does it have the authority to revoke medical licenses, since this is the responsibility of the individual states.
Typically, most states do not require that physicians administer the drugs for lethal injection, but many states do require that physicians be present to pronounce or certify death.
[edit] Controversy: Arguments against
[edit] Awareness
Opponents of lethal injection believe that it is not actually humane as practiced in the United States. Opponents argue that the thiopental is an ultra-short acting barbiturate that may wear off (anesthesia awareness) and lead to consciousness and an excruciatingly painful death wherein the inmate is unable to express their pain because they have been rendered paralyzed by the paralytic agent.
Opponents point to the fact that sodium thiopental is typically used as an induction agent and not used in the maintenance phase of surgery because of its short acting nature. Following the administration of thiopental, pancuronium bromide is given, to which opponents argue that it not only dilutes the thiopental, but masks any pain when the thiopental wears off since the patient is paralyzed.
Additionally, opponents argue that the method of administration is also flawed. They state that since the personnel administering the lethal injection lack expertise in anesthesia the risk of failing to induce unconsciousness is greatly increased. Also, they argue that the dose of sodium thiopental must be customized to each individual patient, not restricted to a set protocol. Finally, the remote administration results in an increased risk that insufficient amounts of the lethal injection drugs enter the bloodstream.
In total, opponents argue that the effect of dilution or improper administration of thiopental is that the inmate dies an agonizing death through suffocation due to the paralytic effects of pancuronium bromide and the intense burning sensation caused by potassium chloride.
Opponents of lethal injection as currently practiced argue that the procedure employed is entirely unnecessary and is aimed more towards creating the appearance of serenity and a humane death than an actually humane death. More specifically, opponents object to the use of Pancuronium bromide. They argue that its use in lethal injection serves no purpose, since there is no need to keep the inmate completely immobilized when the inmate is physically restrained.
[edit] Research
In 2005, University of Miami researchers, in cooperation with an attorney representing death row inmates, published a research letter in the medical journal The Lancet. The letter stated that in 43 of the 49 executions they investigated (88%), the level of thiopental in the blood was lower than that required for surgery.[13] This has led them to believe that the prisoners were fully aware of what was happening to them. The Koniaris article has been rebuked by both sides of the lethal injection debate because it relies entirely on thiopental levels in blood drawn many hours after the time of death. Thiopental, like many lipid-soluble drugs, is strongly affected by post-mortem redistribution processes that have the effect of lowering thiopental concentrations over time in many parts of the body, including the femoral vein where most postmortem samples are drawn. The vast majority of current (and past) legal challenges to lethal injection have eschewed this scientifically flawed article, and it is widely scorned by forensic toxicologists. The only author of this paper who is an anesthesiologist, Dr. David Lubarsky, has never testified in court about this research and has declined all requests to do so. The authors attributed the rate of likely consciousness among inmates to the lack of training and monitoring in the process, and recommended that states take a look at the American Veterinary Medical Association's recommendations on animal euthanasia[14], which prohibits the use of paralytic agents in combination with barbiturates and adopts as the only "acceptable method" for euthanizing nonhuman primates a single injection of a short-acting barbiturate such as sodium pentobarbital.
[edit] Single drug
The opponents say that because death can be painlessly accomplished, without risk of consciousness, by the injection of a single large dosage of barbiturate, the use of any other chemicals is entirely superfluous and only serves to unnecessarily increase the risk of torture during the execution. Another possibility would be the use of a fast-acting narcotic, such as fentanyl, which is widely used for inducing anesthesia for the entire duratuion of a short operation. To prevent the "patient" waking up too soon, the injection could be repeated before the blood-level falls.
[edit] Cruel and unusual
On occasion, there have also been difficulties inserting the intravenous needles, sometimes taking over half an hour to find a suitable vein. Typically, the difficulty is found in patients with a history of intravenous drug abuse. Opponents argue that the insertion of intravenous lines that take excessive amounts of time are tantamount to cruel and unusual punishment. In addition, opponents point to instances where the intravenous line has failed, or where there have been adverse reactions to drugs, or unnecessary delays during the process of execution.
On December 13, 2006, Angel Nieves Diaz was unsuccessfully executed in Florida using a standard lethal injection dose. Diaz was 55 years old, and had been sentenced to death for murder. Diaz did not succumb to the lethal dose even after 35 minutes, but did after receiving a second dose of drugs. An investigation has been launched as to why the initial dose failed to fulfill its purpose, although a prison spokesman denied Diaz had suffered pain and said his liver disease had interfered with the effect of the drugs. [8]
[edit] Controversy: Arguments in support
[edit] Commonality
The combination of a barbiturate induction agent and a nondepolarizing paralytic agent is used in thousands of anaesthetics every day. Supporters of the death penalty argue that unless anesthesiologists have been wrong for the last 40 years, the use of pentothal and pancuronium is safe and effective. In fact, potassium is given in heart bypass surgery to induce cardioplegia. Therefore, the combination of these three drugs is still in use today. Supporters of the death penalty speculate that the designers of the lethal injection protocols intentionally used the same drugs as used in every day surgery to avoid controversy. The only modification is that a massive coma-inducing dose of barbiturates is given. In addition, similar protocols have been used in countries that support euthanasia or physician-assisted suicide.[15]
[edit] Anesthesia awareness
Thiopental is a rapid and effective drug for inducing unconsciousness, since it causes loss of consciousness upon one circulation through the brain due to its high lipophilicity. Only a few other drugs, such as methohexital, etomidate, propofol, or fentanyl have the capability to induce anesthesia so rapidly. Supporters argue that since the thiopental is given at a much higher dose than for medically-induced coma protocols, it is effectively impossible for a patient to wake up.
Anesthesia awareness occurs when general anaesthesia is inadequately maintained, for a number of reasons. Typically, anaesthesia is induced with an intravenous drug, but maintained with an inhaled anesthetic given by the anesthesiologist (note that there are several other methods of safely and effectively maintaining anesthesia). Barbiturates are used only for induction of anesthesia and these drugs rapidly and reliably induce anesthesia, but wear off quickly. A neuromuscular blocking drug may then be given to cause paralysis which facilitates intubation, although this is not always required. The anesthesiologist has the responsibility to ensure that the maintenance technique (typically inhalational) is started soon after induction to prevent the patient from waking up.
General anesthesia is not maintained with barbiturate drugs. An induction dose of thiopental wears off after a few minutes because the thiopental redistributes from the brain to the rest of the body very quickly. However, it has a long half-life, which means that it takes a long time for the drug to be eliminated from the body. If a very large initial dose is given, little or no redistribution takes place (since the body is saturated with the drug), which means that recovery of consciousness requires the drug to be eliminated from the body, which is not only slow (taking many hours or days), but unpredictable in duration, making barbiturates very unsatisfactory for maintenance of anaesthesia.
The "ultra-short" acting thiopental has a half-life of approximately 11.5 hours and the long acting phenobarbital has a half-life of approximately 4-5 days. It contrasts towards the inhaled anesthetics have extremely short half-lives and allow the patient to wake up rapidly and predictably after surgery.
The average time to death once a lethal injection protocol has been started is about 7-11 minutes.[16] Since it only takes about 30 seconds for the thiopental to induce anesthesia, 30-45 seconds for the pancuronium to cause paralysis, and about 30 seconds for the potassium to stop the heart, death can theoretically be attained in as little as 90 seconds. Given that it takes time to administer the drugs through an IV, time for the line to be flushed, time to change the drug being administered, and time to ensure that death has occurred, the whole procedure takes about 7-11 minutes. Procedural aspects in pronouncing death also contribute to delay and, therefore, the condemned is usually pronounced dead within 10 to 20 minutes of starting the drugs. Supporters of the death penalty say that a huge dose of thiopental, which is between 14-20 times the anesthetic induction dose and which has the potential to induce a medical coma lasting 60 hours, could never wear off in only 10 to 20 minutes.
[edit] Dilution effect
Death penalty supporters state that the claim that pancuronium dilutes the pentothal dose is erroneous. Supporters argue that pancuronium and thiopental are commonly used together in surgery every day and if there were a dilution effect, it would be a known drug interaction.
Drug interactions are a complex topic. Some drug interactions can be simplistically classified as either synergistic or inhibitory interactions. In addition, drug interactions can occur directly at the site of action, through common pathways or indirectly through metabolism of the drug in the liver or through elimination in the kidney. Pancuronium and thiopental have different sites of action, one in the brain and one at the neuromuscular junction. Since the half-life of thiopental is 11.5 hours, the metabolism of the drugs is not an issue when dealing with the short time frame in lethal injections. The only other plausible interpretation would be a direct one, or one in which the two compounds interact with each other. Supporters of the death penalty argue that this theory does not hold true. They state that even if the 100 mg of pancuronium directly prevented 500 mg of thiopental from working, there would be sufficient thiopental to induce coma for 50 hours. In addition, if this interaction did occur, then the pancuronium would be incapable of causing paralysis.
Supporters of the death penalty state that the claim that the pancuronium prevents the thiopental from working, yet is still capable of causing paralysis, is not based on any scientific evidence and is a drug interaction that has never before been documented for any other drugs. Supporters of the death penalty question if this is an invented false claim.
[edit] Blood levels
Researchers at the University of Miami have published an article in The Lancet claiming that the concentration of thiopental in the blood following execution was not sufficient to reliably cause unconsciousness. Supporters of the death penalty dispute this claim, as do informed experts on both sides of the debate. Indeed, there are no longer any credible physicians or scientists who think the publication is anything other than junk science. Of note, the only anesthesiologist among the authors (David Lubarsky) did not contribute to a 2007 Lancet editorial regarding lethal injection, raising speculation that he eventually recognized that he was duped into participating in the initial flawed publication.
The barbiturate class of drugs is highly lipophilic, meaning that the drugs are absorbed and reach high concentration in fatty tissues. Measurement of the drug by blood testing after administration is difficult to assess since most of the drug will not be in the blood. Blood levels soon after administration are the highest for the barbiturate class since the drug has not completely cleared from the blood. This is known as the initial volume of distribution. After a short period of time, the drug then reaches its apparent volume of distribution. Thiopental's initial volume of distribution is 13.8 litres and its apparent volume of distribution is 233 litres.[17] Any blood level drawn after an execution could be compared to the drug level that one would expect in the initial distribution. Since the apparent volume of distribution is much larger than the initial distribution, and hence its blood concentration much lower, a researcher could incorrectly assert that the level of thiopental was insufficient.
Given that the half-life of thiopental is 11.5 hours, the amount of thiopental required in the brain to induce anesthesia is about 50-75 milligrams, and that the dose of thiopental given is 5 grams, supporters of the death penalty state that common sense and medical experience indicate that the condemned is in a coma with certainty. Supporters of the death penalty therefore argue that the conclusions derived from the research must be politically motivated.
In fact, the researchers state that “participation of doctors in protocol design and execution is ethically prohibited.”[18] Therefore, the authors conclude that "a more effective, humane protocol cannot be developed."[19] Supporters of the death penalty state that the bias of the authors and faulty study design invalidate the study's conclusions.
[edit] Single drug
Amnesty International, Human Rights Watch, the Death Penalty Information Center, and other anti-death penalty groups, have not proposed a lethal injection protocol which they believe is more humane. Supporters of the death penalty argue that the lack of an alternative proposed protocol is testament to the fact that the humaneness of the lethal injection protocol is not the issue. Instead supporters argue that the issue is the continued existence of the death penalty, since if the only issue was the humaneness of the procedure, then Amnesty International, HRW, or the DPIC should have already proposed a more humane method.
Regardless of an alternative protocol, some death penalty opponents have claimed that execution can be more humane by the administration of a single lethal dose of barbiturate. Supporters of the death penalty, however, state that the single drug theory is flawed concept. Terminally ill patients in Oregon who have requested physician-assisted suicide have received lethal doses of barbiturates. The protocol has been highly effective in producing a humane death, but the time to cause death can be prolonged. Some patients have taken days to die, and a few patients have actually survived the process and have regained consciousness up to three days after taking the lethal dose.[20] In a Californian legal proceeding addressing the issue of the lethal injection cocktail being "cruel and unusual," state authorities said that the time to death following a single injection of barbiturate is approximately 45 minutes.[21]
Scientifically this is readily explained. Barbiturate overdoses typically cause death by depression of the respiratory center, but the effect is variable. Some patients may have complete cessation of respiratory drive, whereas others may only have depression of respiratory function. In addition, cardiac activity can last for a long time after cessation of respiration. Since death is pronounced after asystole and given that the expectation is for a rapid death in lethal injection, multiple drugs are required; specifically potassium chloride to stop the heart. In fact, in the case of Clarence Ray Allen a second dose of potassium chloride was required to obtain asystole. The position of death penalty supporters is that death should be obtained in a reasonable amount of time.
Supporters of the death penalty agree that the use of pancuronium bromide is not absolutely necessary in the lethal injection protocol. Some supporters believe that the drug may decrease muscular fasciculations when the potassium is given, but this has yet to be proven.
[edit] See also
[edit] References
- ^ "So Long as They Die: Lethal Injections in the United States," Human Rights Watch, 2006, 18(1). I. Development of Lethal Injection Protocols. Cites DPIC, “Methods of Execution.”.
- ^ "Administration and Compounding of Euthanisic Agents," Royal Dutch Society for the Advancement of Pharmacy, 1994.
- ^ "Tödliche Injektion." (German)
- ^ a b Capital Punishment U.K.: Lethal injection."
- ^ a b "So Long as They Die: Lethal Injections in the United States," Human Rights Watch, 2006, 18(1). I. Development of Lethal Injection Protocols.
- ^ Groner, Jonathan I. (2002) "Lethal injection: a stain on the face of medicine," BMJ, 325:1026–8.
- ^ "Sereny, Gitta Into That Darkness: from Mercy Killing to Mass Murder, a study of Franz Stangl, the commandant of Treblinka (1974)
- ^ [1] "Florida lethal injection takes 34 minutes." United Press International, at NewsDaily, December 14, 2006.
- Bean, Matt. "Lethal injection—the humane alternative?", Court TV, June 8, 2001.
- Liptak, Adam. "Critics Say Execution Drug May Hide Suffering", New York Times, October 7, 2003.
- "Prisoners 'aware' in executions", BBC News, 14 April 2005.
- Kevin Bonsor. How Lethal Injection Works. HowStuffWorks.com. Retrieved on September 3, 2005.
- Koniaris, Leonidas G. et al (2005). "Inadequate anaesthesia in lethal injection for execution". The Lancet 365 (9468): 1412–1414.
- "When someone is executed by lethal injection, do they swab off the arm first?" from The Straight Dope