Laplace number
From Wikipedia, the free encyclopedia
The Laplace number (La) is a dimensionless number used in the characterisation of free surface fluid dynamics. It is related to the ratio of the surface tension to the momentum-transport inside a fluid.
It is defined as follows:
where:
- σ = surface tension
- ρ = density
- L = characteristic length
- μ = absolute viscosity
Dimensionless numbers in fluid dynamics |
---|
Archimedes • Bagnold • Bond • Brinkman • Capillary • Damköhler • Deborah • Eckert • Ekman • Euler • Froude • Galilei • Grashof • Hagen • Knudsen • Laplace • Lewis • Mach • Marangoni • Nusselt • Ohnesorge • Péclet • Prandtl • Rayleigh • Reynolds • Richardson • Rossby • Schmidt • Sherwood • Stanton • Stokes • Strouhal • Weber • Weissenberg • Womersley |