Talk:Lagrange multipliers
From Wikipedia, the free encyclopedia
Hi,
I just changed looking for an extremum of g to looking for an extremum of h although I'm not absolutely sure. But I think it is the right term.
- Thanks for catching that; that occurrence of g seems to have been missed when the notation was changed in December.--Steuard 20:51, Jan 28, 2005 (UTC)
- Strictly looking for an extremum of also implies the original via . 84.160.236.56 19:29, 6 Feb 2005 (UTC)
Contents |
[edit] Additional Sections for Lagrange Multipliers
Economic Interpretation An important addition to the discussion on Lagrange multipliers, might be the economic interpretation of such variables, wherein they act as a quantity of marginal utility of a specific constraint to the objective function.
Primal-Dual Relationship They also are fundamental in understanding the relationship between a primal and dual optimization problem. This is related to the economic interpretation since in the dual problem the Lagrangian multipliers become the decision variables and the primal decision variables have the role of the Lagrange mulipliers.
Complimentary Slackness When constraints are inequalities they are variables that indicate whether a constraint is binding. If binding then the multiplier is strictly greater than zero.
Trade-off between multiple objectives In multi-objective optimization, one can formulate using the epsilon-constraint method, then the Lagrange multiplier can be interpreted as the tradeoff between mutliple objectives, which becomes an important value in decision analysis to understand the topology of the Pareto optimal frontier.
How to handle inequality A discussion of how to introduce Lagrange multipliers in case of inequality constraints would be nice, since the only change required is to impose a sign requirement of the Lagrange multiplier. A figure explaining why this is so would be even nicer.
Please add to this list, or post information in the article and delete from this list, otherwise I will try to get my facts together and some references and post, using the established notation.--Kgcrowther 01:00, 16 August 2005 (UTC)
[edit] Treatment of Lagrange Multipliers as a method ONLY
The treatment of Lagrange multipliers as a method only is narrow in scope. Although commonly used in some modern text as a method, they are also a variable with an important role, otherwise referred to as the shadow price or dual variable. --Kgcrowther 15:36, 16 August 2005 (UTC)
[edit] Latest change
There was an inconsistency with how I defined the Lagrangian (and how h was defined previously) in the article and the way it is defined in "without permanent scarring", which meant that I had left out a minus sign. I think the equations as written now are right, but I'm not sure which form is most standard. M0nkey 03:02, 10 February 2006 (UTC) (formerly 68.238.90.222)
[edit] This sentence does not make much sense...
"Only when the contour we are crossing actually touches tangentially the contour g = c we are following will this not be possible"
Perhaps it should be changed to:
"Only when the contour we are crossing touches tangentially the value of f does not change."
??
[edit] Proofs?
I believe this section requires more information in regarding to proving that the coordinates obtained from the method are indeed maxima or minimas, ie more examples & proofs for examples?
- Proofs are not really encyclopedic, and they may stay in the way of reading the article. More examples never hurt, and if proofs are really necessary at some point and they are helpful and short, one could also put in a proof maybe. Oleg Alexandrov (talk) 19:00, 3 May 2006 (UTC)
- Theorems are only right when they are proven so, one can understand how to use the theorem, but it is only when he understands the proof does he truely understand the meaning of the theorem. I do appreciate how long proofs can do more harm than good to the article, but for instance adding the proof to a specific example, no matter how short, would greatly aid the reader in comprehending the text. RZ heretic 10:51, 5 May 2006 (UTC)
- Existence of lagrange multipliers is a necessity condition, not a sufficiency condition. In any case I think some sort of proof would be helpful, specifically I think that geometric intuition suffices for the case of one constraint but is less clear when considering multiple constraints (with several multipliers). M0nkey 00:34, 15 June 2006 (UTC)
[edit] Simplicity
This article barely introduces a non mathematician to Lagrange multipliers. The first few sentences could do with a little English.
The article doesnt also mention the 'real world' applications of Lagrange multipliers. Kendirangu 07:32, 23 January 2007 (UTC)
- I have to disagree; the lead has only words and a picture with no algebra. The remainder of the article only uses school-level algebra, and so should be comprehensible to many non-mathematicians. Applications in mechanics and economics are mentioned (in addition to the worked examples). --catslash 23:00, 18 February 2007 (UTC)
[edit] The second total derivative of f(x, y)
What's that (very simple example)? - could somebody clarify this bit for me. Thanks --catslash 23:00, 18 February 2007 (UTC)
- I'm not quite sure what the author meant, but it probably has something to do with total derivative. Anyway, I rewrote that part of the example so that it does not refer anymore to total derivatives. If anybody want to give the general procedure for classifying constrained critical points, please go ahead, but for a simple example I think we should use the simple procedure. -- Jitse Niesen (talk) 13:17, 10 March 2007 (UTC)
[edit] Constrained Systems of Equations
Does anyone want to contribute a section and an example with polynomials that a high school algebra student could comprehend? Larry R. Holmgren 04:17, 24 March 2007 (UTC)
- The section "Simple example" contains an example with polynomials. It's hard to come up with a simpler example, though the explanation in that section can probably be improved. Perhaps you can tell where you lose the plot when reading the section, and we can work on improving it?
- PS: Please do not use ~~~~ (four tildes) when you fill in the edit summary. It does no harm, but it looks a bit silly (look up your edit in the history to see what I mean). -- Jitse Niesen (talk) 12:46, 25 March 2007 (UTC)