K-function
From Wikipedia, the free encyclopedia
In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the Gamma function.
Formally, the K-function is defined as
It can also be given in closed form as
where ζ'(z) denotes the derivative of the Riemann zeta function, ζ(a,z) denotes the Hurwitz zeta function and
The K-function is closely related to the Gamma function and the Barnes G-function; for natural numbers n, we have
More prosaically, one may write
[edit] References
- Eric W. Weisstein, K-Function at MathWorld.