Talk:Isotropic radiator
From Wikipedia, the free encyclopedia
[edit] Comment from T - Antenna Theory Section
This looks easily understandable up to "At some point, such coverage must have a discontinuity, i.e. jump in the direction of the vector field." I don't know if there is an easy way to describe this to Joe on the street, but it would help. - T
T, I have made an attempt to correct the description of the hairy ball problem as it relates to the travelling wave and the e and h planes. Kgrr 13:42, 11 August 2005 (UTC)
[edit] Comment from JR Thorpe - Antenna Theory Section
I think that the 3rd paragraph and the 4th paragraph describe the same thing.
"An antenna emits an electromagnetic wave that has two components - the electric and magnetic fields. These are at right angles to each other and also at right angles to the direction of travel of the wave. This presents a problem for a theoretical isotropic radiator since there will be places on the unit sphere where we cannot specify a unique "polarization direction" for the direction of the electric field."
says the same as:
"This is because the electromagnetic wave is made up of two perpendicular components - the electric field E and the magnetic field H. The emitted electromagnetic wave moves perpendicular to the E-plane and H-plane. The wave cannot be lined up so that there is radiation in all directions and that neither the E or H planes cancel each other out. There must be a discontinuity."
Except the second is clearer. I think they should be only one paragraph, preferably the second. (The remark that "An antenna emits ..." is useful though. As is the reminder that perpendicular means at right angles).
I'll change this in a few weeks time if no one objects.