ISKRA lasers

From Wikipedia, the free encyclopedia

The ISKRA-4 and ISKRA-5 lasers are lasers which were built by the Russian Federation at RFNC-VNIIEF in Arzamas-16 (Арзама́с-16) with the approximately 2 kJ output ISKRA-4 laser being completed in 1979 and the 30 kJ output ISKRA-5 laser which was completed in 1989. The main use for both lasers being the investigation into inertial confinement fusion, high energy density physics and nuclear weapons research. The Russian laser fusion program was first initiated on the suggestion of Andrei Sakharov in 1962 concerning the possibility that lasers may be capable of achieving the conditions for fusion in imploding spherically symmetrical fuel capsules.

Contents

[edit] ISKRA-4

ISKRA-4 target chamber with final turning mirrors.
ISKRA-4 target chamber with final turning mirrors.

The ISKRA-4 laser is a spatially filtered (image relayed) 8 beam photolytically pumped iodine gas laser capable of producing laser pulse energies of around 2 kJ (pulsewidth of about 1 ns) at its fundamental emission wavelength of 1.315 micrometers, though it is also capable of operating in a frequency doubled configuration where it emits light at 658 nm with a pulse energy of around 500 J. ISKRA-4 produced its first thermonuclear neutrons from imploding DT fuel capsules in 1981.

[edit] ISKRA-5

The 2 meter diameter target chamber of ISKRA-5 with final focusing optics.
The 2 meter diameter target chamber of ISKRA-5 with final focusing optics.

The ISKRA-5 laser is a spatially filtered (image relayed) 12 beam photolytically pumped iodine gas laser capable of producing laser pulse energies of around 30 kJ and peak pulse powers of around 100 terawatts (pulsewidth about 0.25 ns) at its fundamental emission wavelength of 1.315 micrometers. ISKRA-5, like ISKRA-4, also has the capability for frequency doubling to the second harmonic. Maximum fusion yield on ISKRA-5 is about 1010 to 1011 neutrons per target shot.

[edit] ISKRA-6

ISKRA-6 is a laser under investigation for future construction by VNIIEF which would be in the near-NIF and LMJ class of extremely high energy, high power frequency tripled Nd:glass lasers used to access the ignition regime of imploding DT fusion fuel capsules for nuclear weapons research. ISKRA-6 would be a 128 beam laser capable of irradiating targets with ~300 kJ of laser light at the 351 nm third harmonic with pulsewidths of around 1 to 3 ns.


[edit] See also


Fusion power
v  d  e
Atomic nucleus | Nuclear fusion | Nuclear power | Nuclear reactor | Timeline of nuclear fusion
Plasma physics | Magnetohydrodynamics | Neutron flux | Fusion energy gain factor | Lawson criterion
Methods of fusing nuclei

Magnetic confinement: - Tokamak - Spheromak - Stellarator - Reversed field pinch - Field-Reversed Configuration - Levitated Dipole
Inertial confinement: - Laser driven - Z-pinch - Bubble fusion (acoustic confinement) - Fusor (electrostatic confinement)
Other forms of fusion: - Muon-catalyzed fusion - Pyroelectric fusion - Migma

List of fusion experiments

Magnetic confinement devices
ITER (International) | JET (European) | JT-60 (Japan) | Large Helical Device (Japan) | KSTAR (Korea) | EAST (China) | T-15 (Russia) | DIII-D (USA) | Tore Supra (France) | ASDEX Upgrade (Germany) | TFTR (USA) | NSTX (USA) | NCSX (USA) | UCLA ET (USA) | Alcator C-Mod (USA) | LDX (USA) | H-1NF (Australia) | MAST (UK) | START (UK) | Wendelstein 7-X (Germany) | TCV (Switzerland) | DEMO (Commercial)


Inertial confinement devices
Laser driven: - NIF (USA) | OMEGA laser (USA) | Nova laser (USA) | Novette laser (USA) | Nike laser (USA) | Shiva laser (USA) | Argus laser (USA) | Cyclops laser (USA) | Janus laser (USA) | Long path laser (USA) | 4 pi laser (USA) | LMJ (France) | Luli2000 (France) | GEKKO XII (Japan) | ISKRA lasers (Russia) | Vulcan laser (UK) | Asterix IV laser (Czech Republic) | HiPER laser (European)
Non-laser driven: - Z machine (USA) | PACER (USA)


See also: International Fusion Materials Irradiation Facility