Identric mean

From Wikipedia, the free encyclopedia

The Identric mean of two positive real numbers x,y is defined as:

\begin{matrix} I(x,y) &=& \frac{1}{e}\cdot \lim_{(\xi,\eta)\to(x,y)} \sqrt[\xi-\eta]{\frac{\xi^\xi}{\eta^\eta}} \\ &=& \lim_{(\xi,\eta)\to(x,y)} \exp\left(\frac{\xi\cdot\ln\xi-\eta\cdot\ln\eta}{\xi-\eta}-1\right) \\ &=& \begin{cases} x & \mbox{if }x=y \\ \frac{1}{e} \sqrt[x-y]{\frac{x^x}{y^y}} & \mbox{else} \end{cases} \end{matrix}.

It can be derived from the mean value theorem by considering the secant of the graph of the function x \mapsto x\cdot \ln x. It can be generalized to more variables according by the mean value theorem for divided differences.

[edit] See also