ICRAC
From Wikipedia, the free encyclopedia
ICRAC stands for Ca2+-Release Activated Ca2+ Current. When Ca2+ from the endoplasmic reticulum (a major store of Ca2+) is depleted in nonexcitable mammalian cells, a special plasma membrane Ca2+ channel, the CRAC channel, is activated to slowly replenish the endoplasmic reticulum.
Changes in the cytoplasmic free Ca2+ concentration ([Ca2+]c) constitute one of the main pathways by which information is transferred from extracellular signals received by animal cells to intracellular sites. The intracellular Ca2+ signal is conveyed by the magnitude, location and duration of the changes in [Ca2+]c. Increases in [Ca2+]c in a given region of the cytoplasmic space are usually initiated by the binding of an extracellular signaling molecule (agonist) to its plasma-membrane receptors.
Such signals can arise either from the release of stored calcium or the influx of calcium across the plasma membrane, but more characteristically, from both routes. A common mechanism by which such cytoplasmic calcium signals are generated involves receptors that are coupled to the activation of phospholipase C. Phospholipase C generates inositol 1,4,5-trisphosphate (IP3), which in turn mediates the discharge of Ca2+ from intracellular stores (most commonly components of the endoplasmic reticulum), allowing calcium to be release into the cytosol. In most of the cell, the fall in Ca2+ concentration within the lumen of the Ca2+-storing organelles subsequently activates plasma membrane Ca2+ channels. This calcium influx across the plasma membrane has been called “capacitative calcium entry,” or “store-operated calcium entry”. In non-excitable cells such as blood cells, capacitative calcium entry appears to be the major means of regulated influx of Ca2+ and signal transduction. As a second messenger capacitative calcium entry can induce short term cellular responses, such as proteins-protein interactions, granule secretion…but can also initiate longer-term cellular control mechanisms such as genes transcription that support cell growth, apoptosis, differentiation or activation. In in vitro studies, the effect of this necessary calcium signal for activation of genes transcription factor can be induce by the action of calcium ionophores such as ionomycin.
Activation of T lymphocytes is an essential event for the efficient response of the immune system. Disregulation of this phenomenon can lead to immunological disorder such as autoimmune disease or inflammation. This activation requires the involvement of the T cell receptor antigen as well as well as costimulatory molecules such as CD28. Engagement of this receptor complex will result in a series of signaling cascade, which lead to the production of several cytokines. IL-2 gene transcription, a key event in T cell activation and proliferation, is dependent on the rapid and sustain increase in intracellular Ca2+. Targeting the very early events of cascade signaling pathway, by inhibiting the capacitative calcium entry is an efficient way to prevent T cell activation.