ICE (cipher)

From Wikipedia, the free encyclopedia


ICE
The ICE Feistel function
Designer(s): Matthew Kwan
First published: 1997
Derived from: DES
Key size(s): 64 bits (ICE), 64×n bits (ICE-n)
Block size(s): 64 bits
Structure: Feistel network
Rounds: 16 (ICE), 8 (Thin-ICE), 16×n (ICE-n)
Best public cryptanalysis:
Differential cryptanalysis can break 15 out of 16 rounds of ICE with complexity 256. Thin-ICE can be broken using 227 chosen plaintexts with a success probability of 95%.

In cryptography, ICE (Information Concealment Engine) is a block cipher published by Kwan in 1997. The algorithm is similar in structure to DES, but with the addition of a key-dependent bit permutation in the round function. The key-dependent bit permutation is implemented efficiently in software. The ICE algorithm is not subject to patents, and the source code has been placed into the public domain.

ICE is a Feistel network with a block size of 64 bits. The standard ICE algorithm takes a 64-bit key and has 16 rounds. A fast variant, Thin-ICE, uses only 8 rounds. An open-ended variant, ICE-n, uses 16n rounds with 64n bit key.

Van Rompay et al (1998) attempted to apply differential cryptanalysis to ICE. They described an attack on Thin-ICE which recovers the secret key using 223 chosen plaintexts with a 25% success probability. If 227 chosen plaintexts are used, the probability can be improved to 95%. For the standard version of ICE, an attack on 15 out of 16 rounds was found, requiring 256 work and at most 256 chosen plaintexts.

[edit] References

  • Matthew Kwan, The Design of the ICE Encryption Algorithm, Fast Software Encryption 1997, pp69–82 [1].
  • Bart van Rompay, Lars R. Knudsen and Vincent Rijmen, Differential Cryptanalysis of the ICE Encryption Algorithm, Fast Software Encryption 1998, pp270–283 (PDF).

[edit] External links


Block ciphers
v  d  e
Algorithms: 3-Way | AES | Akelarre | Anubis | ARIA | BaseKing | Blowfish | C2 | Camellia | CAST-128 | CAST-256 | CIKS-1 | CIPHERUNICORN-A | CIPHERUNICORN-E | CMEA | Cobra | COCONUT98 | Crab | CRYPTON | CS-Cipher | DEAL | DES | DES-X | DFC | E2 | FEAL | FROG | G-DES | GOST | Grand Cru | Hasty Pudding Cipher | Hierocrypt | ICE | IDEA | IDEA NXT | Iraqi | Intel Cascade Cipher | KASUMI | KHAZAD | Khufu and Khafre | KN-Cipher | Libelle | LOKI89/91 | LOKI97 | Lucifer | M6 | MacGuffin | Madryga | MAGENTA | MARS | Mercy | MESH | MISTY1 | MMB | MULTI2 | NewDES | NOEKEON | NUSH | Q | RC2 | RC5 | RC6 | REDOC | Red Pike | S-1 | SAFER | SC2000 | SEED | Serpent | SHACAL | SHARK | Skipjack | SMS4 | Square | TEA | Triple DES | Twofish | UES | Xenon | xmx | XTEA | Zodiac
Design: Feistel network | Key schedule | Product cipher | S-box | SPN

Attacks: Brute force | Linear / Differential / Integral cryptanalysis | Mod n | Related-key | Slide | XSL

Standardization: AES process | CRYPTREC | NESSIE

Misc: Avalanche effect | Block size | IV | Key size | Modes of operation | Piling-up lemma | Weak key

Cryptography
v  d  e
History of cryptography | Cryptanalysis | Cryptography portal | Topics in cryptography
Symmetric-key algorithm | Block cipher | Stream cipher | Public-key cryptography | Cryptographic hash function | Message authentication code | Random numbers
In other languages