Hyperbolic secant distribution

From Wikipedia, the free encyclopedia

hyperbolic secant
Probability density function
Plot of the hyperbolic secant PDF
Cumulative distribution function
Plot of the hyperbolic secant CDF
Parameters none
Support x \in (-\infty; +\infty)\!
Probability density function (pdf) \frac12 \; \operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\!
Cumulative distribution function (cdf) \frac{2}{\pi} \arctan\!\left[\exp\!\left(\frac{\pi}{2}\,x\right)\right]\!
Mean 0
Median 0
Mode 0
Variance 1
Skewness 0
Excess kurtosis 2
Entropy 4/π K \;\approx 1.16624
Moment-generating function (mgf) \sec(t)\! for |t|<\frac{\pi}2\!
Characteristic function \operatorname{sech}(t)\! for |t|<\frac{\pi}2\!

In probability theory and statistics, the hyperbolic secant distribution is a continuous probability distribution whose probability density function and characteristic function are proportional to the hyperbolic secant function.

[edit] Explanation

A random variable follows a hyperbolic secant distribution if its probability density function (pdf) is

f(x) = \frac12 \; \operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\!

where "sech" denotes the hyperbolic secant function. The cumulative distribution function (cdf) is

F(x) = \frac12 + \frac{1}{\pi} \arctan\!\left[\operatorname{sech}\!\left(\frac{\pi}{2}\,x\right)\right] \!
= \frac{2}{\pi} \arctan\!\left[\exp\left(\frac{\pi}{2}\,x\right)\right] \!

where "arctan" is the inverse (circular) tangent function. The inverse cdf (or quantile function) is

F^{-1}(p) = -\frac{2}{\pi}\, \operatorname{arcsinh}\!\left[\cot(\pi\,p)\right] \!

where "arcsinh" is the inverse hyperbolic sine function and "cot" is the (circular) cotangent function.

The hyperbolic secant distribution shares many properties with the standard normal distribution: it is symmetric with unit variance and zero mean, median and mode, and its pdf is proportional to its characteristic function. However, the hyperbolic secant distribution is leptokurtic, that is, it has a more acute peak near its mean, compared with the standard normal distribution.

[edit] References

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square)• inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)normal inverse GaussianParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda Dirichletinverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular