Talk:Huygens–Fresnel principle

From Wikipedia, the free encyclopedia

A bit of a crap description, in my view at least. Put simply, Huygen's Principle is that a wave front can be thought of as infinate amount of point sources that produce spherical disturbances that reinforce to produce the secondary wavefront and so on. Although the author mentions how it is related to diffraction, he/she fails to explain how in any significant depth. I feel that too many people on Wikipedia (as brilliant a resource as it is) try to sound clever by using fancy language which at most times is inappropriate.

Contents

[edit] Be more specific in your critique

Actually I found this explanation fine, and I find Wikipedia to be a good resource in addition to others.

Although I understand your complaint in general, as this does happen (see next paragraph), you yourself did not add any value at all to the definition, nor go into even a decent level of detail on expanding the problems you had with it. Simplicity is good; but you still have to be artful in getting your point across. You didn't imho.

To add your own perspective is fine, but to blurt a brief complaint that has no depth or richness itself, frankly just makes you appear as actually the very kind of person that exploits what nominal personal knowledge you have on a subject for reasons of poor self-confidence.

Try to add useful criticisms with some depth instead of coming off, shall we say, a bit unpleasant?

mmf 06:30, 8 November 2005 (UTC) mmf

[edit] Query

I recently added a short section on the connection between Huygens Principle and the Greens function method. For classical and modern physics, the Huygens Principle and its connection to the Greens Function method is tremendously important. A good reference is The Mathematical Theory of Huygens' Principle (Paperback) by Bevan B. Baker, E. T. Copson. The section was removed without explanation. I do not want to add it again without discussion. Best, Rb

I didn't actually remove it, I integrated it into the previous section. I agree the connection is really important, and I'm glad you brought it up, I just think the current version reads easier. It seemed strange to have a separate section for 2 or 3 sentences. If you plan on expounding, by all means readd it.--Hyandat 19:57, 20 December 2005 (UTC)

[edit] Link?

Thanks Hyandat, I just hadn't noticed. The article on Huygens himself does not mention the principle. Should a link be added there? Best, Rb

[edit] Apostrophe or Hyphen has got to go

Shouldn't it be Huygens-Fresnel principle? Huygens' Principle makes sense, but when compounded the possessive should be on either both names (awkward, probably Huygens' and Fresnel's principle), or neither (the Huygens-Fresnel principle). If this is actually a "Fresnel principle" that belongs to Huygens, then the hyphen is wrong (Huygens' Fresnel principle). I'm not correcting this because I don't know the correct expression. edgarde 20:42, 5 June 2006 (UTC)

Nope its Huygens-Fresnel Principle, I spent 2 months studying it at university! Rob.derosa 12:19, 25 June 2006 (UTC)
Thanks for fixing this. edgarde 06:10, 7 July 2006 (UTC)

[edit] di Groot's comment

[note by Siward de Groot: i do not agree with the claim that "the same is true of light passing the edge of an obstacle", because if light passes a narrow slit in vacuum, it causes diffraction bands, but there is no matter in the slit to act as secondary source of light. Rather, the explanation in this case is that:

if an (infinitely large) metal screen is between a source of light and a white wall, then there will be no light falling on the wall. This is because the electromagnetic force of the light acts on the wall, and it also acts on the metal shield, where it gives rise to a secondary electromagnetic force, that is the exact opposite of the original stimulus, so that on the light side of the screen reflected light is apparent, while on the wall side of the screen primary and secondary forces cancel out, so it is dark there.

The secundary force is due to the combined effect of all atoms of the screen. Now if a slit is made in this screen, all parts of this screen still experience the same primary stimulus, and therefore produce the same secondary response, except for the atoms that previously were where now the slit is. Thus the resulting lightness on the wall equals the secondary emission previously caused by these atoms, multiplied by -1 , for every point in time.

It is for this reason that the amplitude of the light apparent on that wall can be computed as if it were caused by secondary sources of light in the slit.]

Moved by --Hyandat 17:52, 23 July 2006 (UTC)