History of mathematical notation
From Wikipedia, the free encyclopedia
Mathematic notation comprises the symbols used in expressing mathematical expressions, equations, and formulas. It is normally made up of Arabic numerals, Roman alphabet letters, and letters from the Greek alphabet.
Contents |
[edit] Beginning of notation
When mathematics was first recorded in writing, numbers were normally expressed as tally marks. Each tally represented a single unit, making it easy to record. One notch in a bone represented one animal, or person, or anything else. The first notation that made use of several symbols was that of the Egyptians. They had a symbol for one, ten, one-hundred, one-thousand, ten-thousand, one-hundred-thousand, and one-million. Smaller digits were placed on the left of the number, as they are in arabic numerals. Later, the Egyptians used hieratic instead of hieroglyphic script to show numbers. Hieratic was more like cursive and replaced several groups of symbols with individual ones. For example, the four vertical lines used to represent four were replaced by a single horizontal line. This is first found in the Rhind Mathematical Papyrus. The system the Egyptians used was discovered and modified by many other civilizations in the Mediterranean. The Egyptians also had symbols for basic operations: legs going forward represented addition, and legs walking backward to represent subtraction.
Like the Egyptians, the Mesopotamians had symbols for each power of ten. Later, they wrote their numbers in almost the exact same way done in modern times. Instead of having symbols for each power of ten, they would just put the coefficient of that number. Each digit was at first separated by only a space, but by the time of Alexander the Great, they had created a symbol that represented zero and was a placeholder. The Mesopotamians also used a sexagesimal system, that is base sixty. It is this system that is used in modern times when measuring time and angles.
[edit] Greek notation
The Greeks changed the notation they used. The first was the Attic numeration, which was based on the system of the Egyptians and was later adapted and used by the Romans. Numbers one through four were vertical lines, like in the hieroglyphics. The symbol for five was the Greek letter pente, which was the first letter of the word for five. Numbers six through nine were pente with vertical lines next to it. Ten was represented by the first letter of the word for ten, deka, one-hundred by the first letter from the word for one-hundred, etc.
The Ionian numeration used the entire alphabet and three archaic letters.
A | B | Г | Δ | E | F | Z | H | θ | I | K | Λ | M | N | Ξ | O | Π | (koppa) | P | Σ | T | Υ | Ф | X | Ψ | Ω | (sampi) |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
This system appeared in the third century B.C., before the letters vau (F), koppa, and sampi became archaic. When lowercase letters appeared, these replaced the uppercase ones as the symbols for notation. Multiples of one-thousand were written as the first nine numbers with a stroke in front of them; thus one-thousand was ,α, two-thousand was ,β, etc. M was used to multiply numbers by ten-thousand. The number 88,888,888 would be written as M,ηωπη*ηωπη[1]
The Greeks were more interested in geometry and had little need for algebraic symbols. Diophantus of Alexandria was one of the first and most famous of Greek algebraists. His Arithmetica was one of the first texts to use symbols in equations. It was not completely symbolic, but was much more than previous books. An unknown number was called s. The square of s was Δy; the cube was Ky; the fourth power was ΔyΔ; and the fifth power was ΔKy. The expression 2x4 + 3x3 − 4x2 + 5x − 6 would be written as SS2 C3 x5 M S4 u6.
[edit] Chinese notation
The Chinese used numerals that look much like the tally system. Numbers one through four were horizontal lines. Five was an X between two horizontal lines; it looked almost exactly the same as the Roman numeral for ten. Nowadays, the huāmǎ system is only used for displaying prices in Chinese markets or on traditional handwritten invoices.
[edit] Beginning of Arabic numerals
Despite their name, arabic numerals actually started in India. The reason for this misnomer is Europeans first saw the numerals used in an Arabic book, Concerning the Hindu Art of Reckoning, by Mohommed ibn-Musa al-Khwarizmi. Al-Khwarizmi did not claim the numerals as Arabic, but over several Latin translations, the fact that the numerals were Indian in origin was lost.
One of the first European books that advocated using the numerals was Liber Abaci, by Leonardo of Pisa, better known as Fibonacci. Liber Abaci is better known for the mathematical problem Fibonacci wrote in it about a population of rabbits. The growth of the population ended up being a Fibonacci sequence, where a term is the sum of the two preceding terms.
[edit] Pre-calculus
Two of the most widely used mathematical symbols are addition and subtraction, + and −. The plus sign was first used by Nicole Oresme in Algorismus proportionum, possibly an abbriviation for "et", which is "and" in Latin (in much the same way the ampersand began as "et"). The minus sign was first used by Johannes Widmann in Mercantile Arithmetic. Widmann used the minus symbol with the plus symbol, to indicate deficit and surplus, respectively.[2] The symbol for the constant pi, π, was also first used during this time. William Jones used π in Synopsis palmariorum mathesios in 1706 because it is the first letter of the greek word perimetron (περιμετρον), which means perimeter in Greek. Ironically, the mathematician Leonhard Euler (who would begin much of his own notation that is used today) did not use π but its equivalent in the Roman alphabet, p. However, others during Euler's time and almost all after it used Jones's notation.
[edit] Calculus
Calculus had two main systems of notation, each created by one of the creators: that developed by Isaac Newton and the notation developed by Gottfried Leibniz. Leibniz's is the notation used most often today. Newton's was simply a dot or dash placed above the function. For example, the derivative of the function x would be written as . The second derivative of x would be written as , etc. In modern usage, this notation generally denotes derivatives of physical quantities with respect to time, and is used frequently in the science of mechanics.
Leibniz, on the other hand, used the letter d as a prefix to indicate differentiation, and introduced the notation representing dervatives as if they were a special type of fraction. For example, the derivative of the function x with respect to the variable t in Leibniz's notation would be written as . This notation makes explicit the variable with respect to which the derivative of the function is taken.
Leibniz also created the integral symbol, . The symbol is an elongated S, representing the Latin word Summa, meaning "sum". When finding areas under curves, integration is often illustrated by dividing the area into tall, thin rectangles. Infintesimally thin rectangles, when added, yield the area. The process of add up the infintesmal areas in integration, hence the S for sum.
See also: Newton's notation, Leibniz's notation
[edit] Euler
Leonhard Euler was one of the most prolific mathematicians in history, and contributed to notation more than any else. His contributions include his use of e to indicate the base of natural logarithms. It is not known exactly why e was chosen, but was probably because the first four letters were already commonly used to represent variables and other constants. He was also one of the first to use π to represent pi consistently. The use of π was first suggested by William Jones, who used it as shorthand for perimeter. He was also the first to use i to represent the square root of negative one, , although he earlier used it as an infinite number. (Nowadays the symbol created by John Wallis, , is used for infinity). For summation, Euler was the first to use sigma, Σ, as in . And Euler was the first to use the notation that is probably used more than anything else, f(x), to represent the function of x.
[edit] Logic
When logic was recognized as an important part of mathematics, it received its own notation. Some of the first was the set of symbols used in Boolean algebra, created by George Boole in 1854. Boole himself did not see logic as a branch of mathematics, but it has come to be encompassed anyway. Symbols found in Boolean algebra include (AND), (OR), and (NOT). With these symbols, and letters to represent different elements, one can make logical statements such as , that is "The existence of element a OR the existence of element NOT a is 1", meaning it is true either a exists or it doesn't. Boolean algebra has many practical uses as it is, but it also was the start of what would be a large set of symbols to be used in logic. Most of these symbols can be found in propositional calculus, a formal system described as . Α is the set of elements, such as the a in the example with Boolean algebra above. Ω is the set that contains the subsets that contain operations, such as or . Ζ contains the inference rules, which are the rules dictating how inferences may be logically made, and Ι contains the axioms. (See also: Basic and Derived Argument Forms). With these symbols, proofs can be made that are completely artificial.
While proving his incompleteness theorems, Kurt Gödel created an alternative to the symbols normally used in logic. He used Gödel numbers, which were numbers that represented operations with set numbers, and variables with the first prime numbers greater than 10. (See a table of the numbers here). With Gödel numbers, logic statements can be broken down into a number sequence. Gödel then took this one step farther, taking the first n prime numbers and putting them to the power of the numbers in the sequence. These numbers were then multiplied together to get the final product, giving every logic statement its own number.[3] For example, take the statement "There is exists a number x so that it is not y". Using the symbols of propositional calculus, this would become . If the Gödel numbers replace the symbols, it becomes {8, 4, 11, 9, 8, 11, 5, 1, 13, 9}. There are ten numbers, so the first ten prime numbers are found and these are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}. Then, the Gödel numbers are made the powers of the respective primes and multiplied, giving . The resulting number is .
[edit] References
- ^ Boyer, Carl B. A History of Mathematics, 2nd edition, John Wiley & Sons, Inc., 1991.
- ^ Miller, Jeff. "Earliest Uses of Various Mathematical Symbols." 04 June 2006. Gulf High School. 24 Sep 2006 <http://members.aol.com/jeff570/mathsym.html>.
- ^ Casti, John L. 5 Golden Rules. New York: MJF Books , 1996.