Hilbert curve
From Wikipedia, the free encyclopedia
A Hilbert curve is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891.
Because it is space-filling, its Hausdorff dimension (in the limit ) is 2.
The Euclidean length of Hn is , i.e. it grows exponentially with n.
For multidimensional databases, Hilbert order has been proposed to be used instead of z-order (curve), because it has a better locality preserving behaviour. Database algorithms with the Hilbert order are found in [1] and [2]
Contents |
[edit] Representation as Lindenmayer System
The Hilbert Curve can be expressed by a rewrite system (Lindenmayer System).
- Alphabet : L, R
- Constants : F, +, −
- Axiom : L
- Production rules:
- L → +RF−LFL−FR+
- R → −LF+RFR+FL−
Here, F means "draw forward", + means "turn left 90°", and - means "turn right 90°" (see turtle graphics).
[edit] Computer program
Butz [3] provided an algorithm for calculating the Hilbert curve in multidimensions.
The following Java applet draws a Hilbert curve by means of four methods that recursively call each other:
import java.awt.*; import java.applet.*; public class HilbertCurve extends Applet { private SimpleGraphics sg=null; private int dist0=512, dist=dist0; public void init() { sg = new SimpleGraphics(getGraphics()); dist0 = 512; resize ( dist0, dist0 ); } public void paint(Graphics g) { int level=4; dist=dist0; for (int i=level;i>0;i--) dist /= 2; sg.goToXY ( dist/2, dist/2 ); HilbertA(level); // start recursion } private void HilbertA (int level) { if (level > 0) { HilbertB(level-1); sg.lineRel(0,dist); HilbertA(level-1); sg.lineRel(dist,0); HilbertA(level-1); sg.lineRel(0,-dist); HilbertC(level-1); } } private void HilbertB (int level) { if (level > 0) { HilbertA(level-1); sg.lineRel(dist,0); HilbertB(level-1); sg.lineRel(0,dist); HilbertB(level-1); sg.lineRel(-dist,0); HilbertD(level-1); } } private void HilbertC (int level) { if (level > 0) { HilbertD(level-1); sg.lineRel(-dist,0); HilbertC(level-1); sg.lineRel(0,-dist); HilbertC(level-1); sg.lineRel(dist,0); HilbertA(level-1); } } private void HilbertD (int level) { if (level > 0) { HilbertC(level-1); sg.lineRel(0,-dist); HilbertD(level-1); sg.lineRel(-dist,0); HilbertD(level-1); sg.lineRel(0,dist); HilbertB(level-1); } } } class SimpleGraphics { private Graphics g = null; private int x = 0, y = 0; public SimpleGraphics(Graphics g) { this.g = g; } public void goToXY(int x, int y) { this.x = x; this.y = y; } public void lineRel(int deltaX, int deltaY) { g.drawLine ( x, y, x+deltaX, y+deltaY ); x += deltaX; y += deltaY; } }
And here is another version that directly implements the representation as a Lindenmayer system
def f walk 10 end def p turn 90 end def m turn -90 end def l(n) return if n==0 p; r(n-1); f; m; l(n-1); f; l(n-1); m; f; r(n-1); p end def r(n) return if n==0 m; l(n-1); f; p; r(n-1); f; r(n-1); p; f; l(n-1); m end l(6)
This is written using the Tuga Turtle programming system which is built on JRuby. It requires Java 5 or higher. To execute, run Tuga Turtle[1] by accepting the self-signed certificate, copy-paste the above code to replace the code in the left-hand pane, and press "Go". You will see a sixth-order Hilbert curve being drawn by the turtle on the screen.
[edit] References
- ^ J. Lawder, P. King: querying multidimensional data indexed using the Hilbert space filling curve. SIGMOD Record, 30(1); 19-24, 2001.
- ^ H. Tropf: US patent application 2004/0177065, an improved description of the European patent EP 03003692.5; it includes also an algorithm for calculating Hilbert values in n dimensions.
- ^ A.R. Butz: Alternative algorithm for Hilbert’s space filling curve. IEEE Trans. On Computers, 20:424-42, April 1971.