High-pass filter
From Wikipedia, the free encyclopedia
A high-pass filter is a filter that passes high frequencies well, but attenuates (or reduces) frequencies lower than the cutoff frequency. The actual amount of attenuation for each frequency varies from filter to filter. It is sometimes called a low-cut filter; the terms bass-cut filter or rumble filter are also used in audio applications. A high-pass filter is the opposite of a low-pass filter, and a bandpass filter is a combination of a high-pass and a low-pass.
It is useful as a filter to block any unwanted low frequency components of a complex signal while passing the higher frequencies. Of course, the meanings of 'low' and 'high' frequencies are relative to the cutoff frequency chosen by the filter designer.
[edit] Implementation
The simplest electronic high-pass filter consists of a capacitor in series with the signal path in conjunction with a resistor in parallel with the signal path. The resistance times the capacitance (R×C) is the time constant (τ); it is inversely proportional to the cutoff frequency, at which the output power is half the input (−3 dB):
Where f is in hertz, τ is in seconds, R is in ohms, and C is in farads.
[edit] Applications
Such a filter could be used to direct high frequencies to a tweeter speaker while blocking bass signals which could interfere with or damage the speaker. A low-pass filter, using a coil instead of a capacitor, could simultaneously be used to direct low frequencies to the woofer. See audio crossover.
High-pass and low-pass filters are also used in digital image processing to perform transformations in the spatial frequency domain.
Most high-pass filters have zero gain (-inf dB) at DC. Such a high-pass filter with very low cutoff frequency can be used to block DC from a signal that is undesired in that signal (and pass nearly everything else). These are sometimes called DC blocking filters.