Talk:Hidden variable theory
From Wikipedia, the free encyclopedia
Hidden variables theory was developed after quantum theory made its debut in the late 1920's. Its most modern supporter is physicist David Bohm. It proposes that the uncertainty that characterizes quantum theory and the nature of the so-called wave function for matter is just a result of our not having a complete set of variables in order to fully describe the quantum state. If we did have the full set of variables, or so the theory goes, the new ones would make the quantum state fully deterministic rather that fundamentally indeterminate as it now seems to be. The new variables seem to be extremely well 'hidden' because modern quantum theory now accounts for all of the quantities that experimentally we seem to have a good handle on such as position, time, spin, charge, energy and momentum.
The idea is similar to the role that atoms played in understanding thermodynamics. In the late 19th century, Boltzman proposed that heat could be understood as simply the kinetic energy associated with atoms, however, many senior physicists of the day disbelieved the idea that atoms existed. Einstein later described Brownian motion in terms of atoms bouncing off of dust, and 10 years later the idea of atoms became firmly established.
In 1932, the great mathematician John von Neumann wrote a highly influential book on Quantum Mechanics in which this theory was treated as a purely mathematical theory as though it were a branch of mathematics. He presented in this great work, a proof that no hidden-variable theory could ever reproduce the results of quantum mechanics. This is where the discussion remained until David Bohm, then in Brazil in the 1950's, refuted von Neumann's proof and wrote two papers which presented a specific model in which hidden-variables could exist, and in which quantum mechanics as we know it was preserved. However, each individual system is in a precisely definable state determined by definite laws. Quantum probabilities are a practical necessity, not a reflection that there is a lack of complete determination of the properties of matter. In other words, quantum mechanics was just another form of classical mechanics free of probabilities. indeterminism and all the other enigmas of the quantum world.
What Bohm had done is to find a statement by von Neumann that was true most of the time, but that under certain circumstances would not hold. This mathematical statement was the crux of his proof that hidden-variable theory was impossible. Bohm found an exception to this statement, and developed his model of a hidden-variable theory to occupy this logical niche in von Neumann's otherwise correct proof.
In the early 1960's the physicist John Stewart Bell and his physicist wife went to work at Stanford University. John Bell had always been intrigued and even a bit obsessed by the foundations of quantum theory, von Neumann's work, and the so-called Einstein-Podolsky-Rosen experiment, and he took this new opportunity to investigate this hazy area in physics. What he ultimately came up with was a surprisingly simple experimental test which defined in rather absolute terms just what kind of theory quantum mechanics is, and what the possibilities would have to be for ANY challenger to it.
Bell's Theorem, expressed in a simple equation called an 'inequality', could be put to a direct test. It is a reflection of the fact that no signal containing any information can travel faster than the speed of light. This means that if hidden-variables theory exists to make quantum mechanics a deterministic theory, the information contained in these 'variables' cannot be transmitted faster than light. This is what physicists call a 'local' theory. John Bell discovered that, in order for Bohm's hidden-variable theory to work, it would have to be very badly 'non-local' meaning that it would have to allow for information to travel faster then the speed of light. This means that, if we accept hidden-variable theory to clean up quantum mechanics because we have decided that we no longer like the idea of assigning probabilities to events at the atomic scale, we would have to give up special relativity. This is an unsatisfactory bargain.
(Caroline Thompson 22:48, 30 Jun 2004 (UTC)) But there exists another kind of hidden variable theory that can explain the observed experimental results. The loopholes in the experiments mean that there is no compulsion to accept that Bell's inequality really has been violated. The necessary auxiliary assumptions for the modified versions of the test ( the CHSH or CH74 test) used in practice may well not be met. This opens the door for theories that Einstein et al would have been happy with -- that are completely local and do not involve signals faster than light. Adopting such a theory does mean, though, challenging the correctness of the quantum-mechanical predictions for separated particles. As someone wrote in another Talk page (the one on quantum entanglement): "... if EPR were right, then QM wouldn't just be incomplete, it would be downright wrong."
(Cema 04:21, 3 Dec 2004 (UTC)) I got redirected to this page from the Hidden variables. These are important in statistics. Instead of redirecting them here, as now, I suggest to make that page a disambiguation page.
link to EPR paper; goes to registration-required site. Suboptimal.
Is it intended that text on the Talk page go into the article? The Talk page is more informative and better written than the article.67.118.119.253 05:08, 19 Jan 2005 (UTC)
- The edit history shows that the Talk commentary was written by the original contributor of the article. As it stands, the original commentary shows that Bohm's hidden variable theory is ill-founded. (See, for example, the last two sentences, ending in unsatisfactory bargain) But the last word has not been written on this topic. Ancheta Wis 06:34, 19 Jan 2005 (UTC)
Yes! E.g. "This leads to the strange situation where measurements of a certain property done on two identical systems can give different answers." (from the main article) desperately needs a reference or redaction. AFAIK, this is only true if 'identical' is redefined as 'not MEASURABLY different', which is IMO NOT its normal meaning! (And s/identical/not MEASUREABLY different/ results in a MUCH weaker statement! Bell's claim/'discovery' mentioned above also desperately needs a reference. I'm skeptical of the claim...
[edit] Albert Einstein's effort
"In 1927, Einstein produced a hidden-variables interpretation of Erwin Schrödinger's wave mechanics. But he abandoned the effort prior to publication when he found that even his own hidden-variables interpretation involved a kind of failure of spacial separability that Schrödinger later dubbed "entanglement".
From elsewhere in the article: this effect is due to identical particles being indistinguishable. (The wave equations are local.)
"Albert Einstein as a Philosopher of Science", by Don A. Howard, Physics Today, December 2005
David R. Ingham 23:57, 30 January 2006 (UTC)
Apparently, his intention was to formulate a different theory that used the same Schrödinger equation. If he were only interested in a philosophical interpretation of quantum mechanics, he would not have hoped to get rid of entanglement. David R. Ingham 03:32, 31 January 2006 (UTC)
[edit] Cleanup
This article looks like a bunch of informative sections without much cohesion. Please expand the intro and make the article more coherent and less ambiguous. (I'd do it myself but I don't know much about the topic.) Thanks --Zoz 23:26, 3 March 2006 (UTC)
- I agree. As it stands, it's quite informative and well-written, but the cohesion could be improved. And it needs better references. I'll put it on my watchlist and come back to it this weekend. I'd like to find some peer-reviewed resources on this topic (for or against doesn't matter to me - I just want to learn more and have the current state of knowledge on this topic properly represented in the article). Cheers, Astrobayes 22:22, 27 June 2006 (UTC)
[edit] Merge with Bohmian mechanics
Any objections? --Michael C. Price talk 01:38, 24 August 2006 (UTC)
I have copied over and merged with Bohmian mechanics. This article will now redirect to Bohmian mechanics --Michael C. Price talk 22:16, 1 September 2006 (UTC)