Talk:Graviton
From Wikipedia, the free encyclopedia
[edit] Old comments
The experimental section needs revision. As an experimentalist in the field I will be happy to do this. Many new aspects for detecting the graviton have been proposed and many are extremely promising. Also, Id like to elaborate on the theory, which is extremely interesting and complex. This article as yet has no discussion of connections or requirements with the standard model, or extraspatial dimensionalities. Objections? Requests? Suggestions? Lagrangian
- I find what looks like three different questions, so I'm giving three separate replies.
This page needs at least copyediting, maybe revision of contents.
From a historical viewpoint it is quite intruiging, whether the graviton exists as elementary particle or not. 150 years ago physicists were searching for the calory. In the end the calory was not a particle but a property. [G.K.]
- More like 250 years ago. They had no framework. The "calorie" was just an idea.
- In contrast, gravitons have not been postulated to explain something presently incomprehensible, but are a seemingly inevitable consequence of two of our best theories of physics, GR and QM. Their biggest role in physics is to tell theorists whether or not their equations have a chance of talking about quantum gravity. These equations will normally be far more interesting than mere gravitons, and maybe someday one of them will be testable.--192.35.35.34 20:05, 16 Feb 2005 (UTC)
Why must gravitons be for attractive gravity? Gravity is, in fact, noticeably repulsive at extragalactic scales. (Think about universal expansion! and inflation.) How else could the universe counter an unsaturated force from a pseudosingularity? lysdexia 07:10, 16 Oct 2004 (UTC)
- Who says that's "gravity"? Inflation results from GR mixed with GUT symmetry breaking.
- As it is, the "attraction" in question, when talking about quantizing gravity, is what gravity does "matter to matter". In other words, the people studying quantum gravity are studying this situation, and here is where they expect to find gravitons. The fun with GR, of course, is that space-time bending and warping is an added bonus. Quantization and the graviton concept does not touch these issues, although many people would like to find a way to do so.--192.35.35.34 20:05, 16 Feb 2005 (UTC)
The following is not a question concerning the article itself, but asking if the graviton itself has a function, while the below train of thought is correct:
How could a grivaton be able to transport the information if there is gravity (or not) through a black holes rim (schwarzschild radius) in order to make the singularity have gravitation, while it has to speed up the information faster than light to do this.
-nerdi (de.wp.org) 9.12.2004 Thank you in advance
- Are we not in consensus that gravitons, should they exist, would be massless, and therefore not subject to gravity themselves? even photons have some mass, hence their attraction to singularities and "black holes", but gravitons not having a mass themselves would mean that they can travel freely out of a singularity. In addition, if they had no mass, then wouldn't a graviton, according to E=MC^2, be to travel faster than the speed of light? if they are less massive than a photon then can't they can travel faster with the same "energy"?
Butler-10/4/06
I am not sure but if they didn't have a mass wouldn't that mean the speed in E=MV^2 would go to infinity or in other words be instantaneous thought out the universe? Virtual circuit 05:23, 9 January 2007 (UTC)
- The short answer is that the treatment of force by exchange of virtual particles is really a heuristic for certain complicated mathematical calculations, whose validity as a calculation is unknown in regards to gravity. In other words, "no comment".
- So perhaps the real question is how can physicists even think to be looking for quantum gravity with a theory that has gravitons escaping from a black hole all time, whence nothing (or essentially nothing) is supposed to escape? The answer is that virtual particles do not have most of the properties of real particles. In particular, they are not bound by the speed of light. So the Schwarzschild radius, defined as where the escape velocity is c, only restricts real particles.
- In fact, an elementary argument says QFT + SR requires antimatter to exist, as follows: if two particles exchange a virtual particle that happens to be going faster than light, there must be a frame of reference that thinks the particle exchange happened in the reverse order. The virtual particle in this second frame has all the properties of the antiparticle to the virtual particle in the original frame.
- Again, this is just a heuristic reading of certain mathematical calculations. There is no "information" involved, and SR is not violated. Note that this goes back to the birth of QFT in the thirties. In other words, it's a non-issue for black holes because it's a non-issue in general.--192.35.35.34 20:05, 16 Feb 2005 (UTC)
This entry needs more mathematical discussion. Showing how linearized gravity can be quantized would be nice.
Dark energy implies anti-gravity. Which makes sense why univerese expands like it does. Since it is 70% of Universe acording to wiki article and so little is known about them, it's futile to simply ignore a posible relationship. --Cool Cat My Talk 15:42, 20 Mar 2005 (UTC)
- No. Dark energy is a negative pressure. No antigravity. In fact, there can't be antigravity unless GR is seriously wrong. --Pjacobi 16:53, 2005 Mar 20 (UTC)
-
- Antigravity in GR works just like antigravity in Newtonian gravity. It requires a negative stress-energy tensor. We see no negative mass particles around us. Negative mass particles would have behaviors at odds with physical reality. From a certain perspective negative pressure makes antigravity. It is a negative stress-energy contribution and is repulsive like a negative mass would be. The perspective depends on if you place the contribution on the right or left hand side of the equation. Your statement is valid though. (CHF 04:59, 28 October 2005 (UTC))
-
- agree i once had a stone with a negative mass, but at one day when i opened the box to show it outdoors it went straight up in the sky, it was probapply the last stone of it's kind on earth.
Could this not raise questions about Antigravitons, though?
I believe not because gravity is not supposed to be a specific interaction. In fact there is no evidence for a gravitational force. -- Orionix 08:21, 11 Apr 2005 (UTC)
Ok, but if we think with scope about Newtonian physics, particularly Newton's third ("Whenever one body exerts force upon a second body, the second body exerts an equal and opposite force upon the first body.") the supposed force in this example is cultivated by 'gravity' and the opposing is the 'NRF'. Due to the nature of the topic (to theorize that such a particle as a graviton could exist), could you not also be led to believe that the cancellation of the two forces (gravity and NRF) are both diametric opposites? --- I apologize about the poor wording and how ill thought-through my theory is. Also for using a basic principle with outdated physics. Please feel free to correct, coment and criticise.
-
- First of all, there are no antigravitons. Gravitons, like photons, must be their own anti-particle. This is true of any neutrally charged fundamental particle. However, it's not true of composite particles -- e.g., neutrons have an antiparticle, because they're not fundamental (they're made of quarks).
-
- Second, I can't understand what Orionix means by "there is no evidence for a gravitational force." I just knocked a book off my desk and it fell to the floor -- is this not evidence of a gravitational force?
- It depends on what you mean by gravitational force. If you mean some static attraction between the book and the Earth mediated by gravitons (left in physics as a Newtonian prejudice) then of course it doesn't exist. The gravitational force turned out to be an inertial force generated by the book itself. It is generated since in curved spacetime the internal energy of the book (it's gravitational energy) depends on distance x: F = − d(mc2) / dx = − 2mcdc / dx = gm since in curved spacetime dc / dx = − g / (2c). Jim 20:37, 20 November 2006 (UTC)
- Second, I can't understand what Orionix means by "there is no evidence for a gravitational force." I just knocked a book off my desk and it fell to the floor -- is this not evidence of a gravitational force?
-
- Third, with regard to equal and opposite forces: Both forces are gravity. The Earth exerts a gravitational pull on the moon, pulling it towards the Earth. The moon likewise exerts the same force on the Earth, but in the opposite direction (towards the moon, not towards the Earth). -- Tim314 19:46, 10 July 2006 (UTC)
- This is an example of this "Newtonian prejudice". The Moon acts only on the space(time) around it and the Earth feels only changes in the spacetime to which it reacts with movement along different path than it would take if there were no Moon. It simulates the existence of "gravitational attractive force" between the Earth and the Moon however not perfectly and that's why Einstein was able to figure out that this force is only apparent. There is no evidence for existence of such an attractive force and there is plenty that it doesn't exist. Even Newton didn't believe that it exists. As a real scientist he didn't mix supernatural ("spooky action at distance", as Einstein put it) with science. It turned out that Newton was right. So the "Newtonian prejudice" wasn't even that of Newton's himself. It's the prejudice of those who still believe in ghosts, which makes the majority of Earth population however not including neither Newton nor Enstein from whom we might learn what's real (Einstein's theory) and what's magic (Newton's theory, just math which works like magic but only approximately). Jim 08:32, 21 November 2006 (UTC)
- Third, with regard to equal and opposite forces: Both forces are gravity. The Earth exerts a gravitational pull on the moon, pulling it towards the Earth. The moon likewise exerts the same force on the Earth, but in the opposite direction (towards the moon, not towards the Earth). -- Tim314 19:46, 10 July 2006 (UTC)
Wouldn't gravitons be considered a boson or even a gauge boson? Or would this break the symmetry?
- (1) Yes. (2) What symmetry? (CHF 13:24, 27 October 2005 (UTC))
-
- A beautiful example of applied magic (a.k.a. applied math). To make the point visible even better I propose to split graviton into three more types of bosons:
- to be sure which of those distinctive forces we really have in mind. Of course all of them spin 2 particles. Jim 09:01, 21 November 2006 (UTC)
-
[edit] Fridge magnet comparison
Is the "an ordinary refrigerator magnet can generate enough force to lift a mass against the force of gravity generated by the entire planet" comparison valid? After all, the magnet isn't 6900km away. If the Earth's mass was concentrated in a 5cm sphere, I suspect its gravity would easily overwhelm a small magnet!
- Furthermore, it doesn't show what is claimed - that gravity is the weakest force. A simple experiment will demonstrate this. The magnet also is not visibly affected by the weak or strong magnetic forces, yet taking the magnet slightly off the fridge causes it to fall to the earth. I could therefore hypothesize that the strength of the forces is magnetic, gravitational, everything else in order. The problem is that the experiment assumes the reader is familiar with other forces and their specific limitations. Any reader this knowledgable will already be aware that a 5g magnet can produce more than 5g-force. (Another counter argument is that galaxies are held together with gravity, not magnetism, so gravity is stronger)
- A better experiment would be to try and measure gravity itself, perhaps by hanging lead weights and trying to measure the attraction to another weight. The difficulty in doing this compared to measuring the force produce by electrostatic repulsion is far more compelling. njh 01:06, 3 January 2006 (UTC)
-
- I agree with the criticisms of the fridge magnet comparison. I've replaced it with an explanation of why gravity is dominant at large scales, despite being the weakest force (as far as individual particles are concerned). -- Tim314 20:07, 10 July 2006 (UTC)
[edit] The strength
more should be discussed about why the graviton is not as strong as the other three forces should be addressed. Maybe Lisa Randall's proposal and others should be presented there.
- It's already in there: "An interesting feature of gravitons in string theory is that, as closed strings without endpoints, they would not be bound to branes and could move freely between them; this "leakage" of gravitons from our brane into higher-dimensional space could explain why gravity is such a weak force" -- Xerxes 16:33, 14 December 2005 (UTC)
[edit] Inter-brane communication
Does gravity leaking into other branes make it possible to communicate with other universes? Is a gravi-SETI in the works? -- id
[edit] Historical background needed
Article needs dates with small history background. Specifically:
- who coined the term?
- who framed the concept?
- important theoretical contributors?
- dates?
- major developments?
If you know any such factoids, then please contribute them with sources.--Sadi Carnot 15:22, 27 February 2006 (UTC)
The term it self, Graviton, comes from Quantum Physics or quanta, (quantum theory of gravity.)quantization of all known forces, particles, etc..--David Sanchez
- Other 3 types of bosons of the same spin 2:
- The terms were coined, framed, theortically contributed to by Jim a few years ago (exact date unknown). The only known major development is a request from wikipedia folks to place theoretical considerations on talk pages rather than correcting article pages, which I'm just doing. Jim 09:25, 21 November 2006 (UTC)
[edit] Gravitons transmit curvature
Item: In general relativity, a quadrupole moment is needed to generate gravitational waves. For example, a rotatating star will not generate gravitational waves, but a spinning bar (or co-rotating stars) will. Now as a spinning bar or co-rotataing stars do their thing, they are twisting the shape of spacetime in the neighboring spacetime (and to an ever-lessing extent beyond themselves). So what gravitational waves and therefore the gravitons they must harbor are transmitting is not gravitation but instead changes in gravitation.
I am quite frustrated that I cannot find a reference that directly makes this point. Without a good reference, I am not comfortable with placing this insight into this article, even though Gunnar Nordström abandonned his gravitational theory in favor of general relativity due to the lack of any way to transmit curvature change information to other parts of spacetime. --EMS | Talk 16:58, 23 March 2006 (UTC)
- That's not necessarily true. For example, Coulomb's Law can be derived from considering the exchange of photons, so photons are not just connected with electromagnetic waves. I'm still somewhat of a novice at QFT, so I can't give complete details. Apparently Newton's law can be derived in a similar way from the exchange of gravitons. That's actually what I was looking for when I came here...
- Shambolic Entity 23:50, 8 October 2006 (UTC)
- I read a book that discussed precisely this some time ago, but now I can't remember the name in order to track it down... Sorry! --Grey Knight ⊖
[edit] is a graviton required?
I'm not a physicist altough i watch and read science with great intrest. I remember one science expiriment in which it was proven that: 2 ship in water side by side. / or 2 mirrors side by side overtime without putting an extra force on them attract eachother, and it had al to do with wave functions (water waves for the ships, or light waves between the mirrors). The effect was almost nihil. now imagine particles as waves, quantum mechanics as a universe of waves. Then have u huge collections of such waves for example a plannet, i wonder i the same effect would work and could be like gravitation.
i'm sorry to have forgotten that first science expiriment perhaps a physican can put some light on this.
- You're thinking of the Casimir effect. It has nothing to do with gravity, being entirely due to quantum mechanics. Its fall-off with increasing distance is much steeper than gravity; it is not proportional to mass; it is a strong function of geometry; and it has various other features that are nothing like gravity. -- Xerxes 21:16, 13 April 2006 (UTC)
[edit] Graviton: building blocks
Gravitons are repulsive to each other but are attractive to other particles. More to the point they what all other matter goes through. When the universe first came into being after time split off from gravity then started to spin into a closed loop taking away from its mass to become a complete particle with a spin two. Being a spin two particle it since did not need forces to attract itself to other gavitons and repulsed each other but attracting other particles with higher vibration (mass), but lower spin (continuity) there by they were(and still are) open and have more influence(forces) over each other. When gravitons started repulsing one another that made the universe expand carrying with them random masses of matter and energy, a process called inflation. One may observe when many gravitons group together around gallaxies by x-ray hallos that surround them. The gravitons are more dense near the gallaxy(which would mean they may do infact have a mass themselves and/or are attracted and attacted by lower spin matter/energy). They do no stop between gallaxies but fill the 'void' throughout the universe. Photons are spin one and may be 'channeled' through a simular particle to the graviton the graviscar. About 74% of matter of the universe does not interact with present day methods of detecting it but it keeps the universe expanding at a higher and higher rate. About 22% of energy is seemingly unedectable. Which leaves 4% of detectable matter and energy including photons, and neutrinos which have a small almost neglegable mass.Zombiebhp 05:22, 31 May 2006
- This material is original research. Please do not add it to the article. -- Xerxes 14:46, 31 May 2006 (UTC)
-
- No it's not; it's just incoherent babble. Shambolic Entity 06:54, 11 October 2006 (UTC)
-
-
- No it's not; it's just a contemporary physics (which should be called rather applied magic, but for some reason it is called physics so let's stick to the official terminology). Jim 09:50, 21 November 2006 (UTC)
-
[edit] Strength
Many people are surprised to learn that gravity is the weakest force. A simple experiment will demonstrate this, however: an ordinary refrigerator magnet can generate enough force to lift a mass, such as a paper clip, against the force of gravity generated by the entire planet Earth.
I think that's a hazy analogy... gravity, all by itself, can accelerate something the size and mass of a battleship to 20 mph in just one second. I don't think we have any technology that could do that. Maybe "weak" isn't the right term. -Rolypolyman 15:21, 6 June 2006 (UTC)
- Gravity is indeed exceedingly weak. A technical description in terms of the gravitational coupling constant or quark-quark cross sections would probably not be more illuminating than the description given though. -- Xerxes 15:50, 6 June 2006 (UTC)
-
- I do think Rolypolyman has a point, though. While gravity can be overcome rather easily, perhaps a better word is in order, or an expansion on the example. A battleship has more mass, so needs a larger magnet to overcome the Earth's pull. --69.237.113.185 21:46, 7 July 2006 (UTC)
-
-
- See comments above under the heading "fridge magnet comparison". Gravity is extremely weak at the level of individual particles, but is often the dominant force acting on large scale objects. I've added a brief explanation of this to the article (in place of the more confusing comment on magnets). -- Tim314 22:22, 10 July 2006 (UTC)
-
-
- I don't understand how you can say electromagnetism is stronger than gravity. The gravitational constant is 6.6742e-11 m^3 s^-2 kg^-1. the electrostatic constant is 8.988e^9 kg m^3 C^-2 s^-2. This would make the gravitational constant to electrostatic constant ratio 7.4257e-21 C^2 kg^-2. If that's more than one, gravity is stronger; if it's less then one, electromagnetism is stronger. How much is a coulomb squared divided by a kilogram squared? If you use Planck units, the two forces are equal. — Daniel 01:21, 24 September 2006 (UTC)
-
-
- There is no gravitational attractive force in the universe so the issue as a physical problem is moot. However to compare gravitational "ineraction" with electrical repulsion people compare the interactions of two electrons: (fictitious) "gravitational Newtonian force" and Coulomb repulsion and so the first one is many orders of magnitude smaller. Jim 10:03, 21 November 2006 (UTC)
-
Gravity was compared to a magnet. They said that magnetism is so much stronger because it can pick up a nail and overcome gravity. But gravity from the earth is coming from so far away, it's coming from within the earth. Let's take the nail and put it one foot or one mile above the earth, then take the magnet and put it one foot or one mile above the nail. Now tell me which one would win out! Just moving the magnet a foot away will make it useless, but moving the nail miles above the earth will make little difference. AntiLiberal2 20:36, 7 January 2007 (UTC)
[edit] Neutrality?
Does this article seem biased at all, to anyone? The first section is definitely a harsh representation of a theory which has been neither proven nor disproven.
69.237.113.185 21:42, 7 July 2006 (UTC) (Alex)
- At the very least, the opening section is a bit misleading. It points out that General Relativity (the theory of gravity) is background independent, whereas the Standard Model (the theory of all other forces) isn't. However, it gives the impression that this means gravity can't be treated like the other forces. Really, it means that GR and the SM are incompatible -- there needs to be some underlying "quantum gravity" theory that reconciles the two. Some proposed quantum gravity theories are background independent, and some aren't. We won't know whether gravity is "like the other forces" until we know which quantum gravity theory is correct.
- The point about GR and the SM being incompatible is made further down the article, but not in a way that makes it clear that this addresses the issue of background independence raised above. I'm working on adding a brief section elaborating on these issues. --Tim314 16:38, 12 July 2006 (UTC)
-
- OK, I've added a section called "Is gravity like the other forces?" addressing the role of gravity in the background independence of GR, and the fact that an underlying theory of quantum gravity may or may not share this background independence.
-
- I also changed "success of the Standard Model" to "great success of the Standard Model" in the opening section. A layperson may not know much about the Standard Model. If it's being presented as the main reason for believing in gravitons, I felt it was necessary to make clear why physicists could find this reason compelling. To quote its own article: "To date, almost all experimental tests of the three forces described by the Standard Model have agreed with its predictions." --Tim314 17:20, 12 July 2006 (UTC)
[edit] Problems with the graviton
There are a couple of problems I see with this section. First, this sentence:
- "Many believe the graviton does not exist, at least in the simplistic manner in which it is envisioned. Superficially speaking, quantum gravity using the gauge interaction of a spin-2 field (graviton) fails to work like the photon and other gauge bosons do"
This is just making the point that gravity is nonrenormalizable (made at least twice above). But the people who believe gravitons exist (e.g., string theorists) generally don't believe they exist in this simplistic manner. The quoted comment isn't a criticism of gravitons in current quantum gravity theories, it's a criticism of gravitons as they were first proposed.
Also, much of the rest of the section seems to be talking about gravitational waves, which are something a bit different than gravitons. Perhaps someone more knowledgeable of General Relativity than I am could clarify these remarks, if they're relevant. --Tim314 17:32, 12 July 2006 (UTC)
- I see you haven't gotten a response, and the section seems odd to me as well, though I'm not a physicist. Plus, it's unreferenced. I'll delete it. --Allen 23:13, 25 July 2006 (UTC)
-
- I agree with the deletion. The section seemed very out of place with the rest of the article, and I think I've figured out why. It looks like those lines were taken from a version of the article on gravitational radiation, in which gravitons were briefly mentioned in regard to the analogy between gravitational waves and electromagnetic waves. But the rest of this article doesn't discuss the relation between gravitaional waves and EM waves. It presents the motivation for the introduction of the graviton as coming from the analogy between gravitational force and the other forces. So saying (essentially) "gravitational waves aren't like EM waves", as if that's a criticism of the graviton, doesn't make sense in this context.
-
- In other words, the section seemed to be criticizing a different reason for believing in gravitons than the one given in this actual article. -- Tim314 17:07, 31 July 2006 (UTC)
[edit] Realatively speaking
To me, I don't understand why there is such a strong correlation between mass and gravity in relativity and not in the standard model. We've never seen a higgs boson or a graviton. To myself it makes much more sense to propose a bound state of a higgs boson and a graviton to make up for experimental problems. Please, someone with experiance in this feild tell me if I'm on a good track or if I'm out in Left feild. -MJH
- The main difference between the higgs and the graviton is that the former might exist but the latter can't. The simple reason is that gravitational force is not a fundamental force between particles but purely inertial force related to one particle only, to its mass (as inertia is). So if "graviton" is pure fantasy it may have any properties one wants it to have (e.g. it might be a string) and it should be mentioned in the article on graviton. In my opinion. I would also introduce other spin 2 bosons of this type like inertion, centrifugon, and Coriolison that mediate other types of gravitational forces. Why to limit our fantasis to only one particle? Jim 10:30, 21 November 2006 (UTC)
-
- I think that you are in left field. The Higgs boson as hypothesized is too heavy to be observed using today's colliders. The graviton is something else. As there is evidence for gravitational radiation existing, it follows under quantum mechanics that it must be composed of gravitons. Do note that gravitons are as capable of existing in a bound state as a photon is, and photons cannot be bound. --EMS | Talk 21:26, 21 November 2006 (UTC)
-
-
- Why, knowing for sure that gravitation is not a fundamental force, do you compare gravitons to photons and not to phonons? Consequently, why don't you specify phonons (bosons as well) as carrying fundamental force? To be true to yourself you should agree also to inertion, centrifugon, and Coriolison as the same type of bosons as graviton since they carry exactly the same type of force. Jim 06:40, 22 November 2006 (UTC)
-
-
-
-
- Gravitons, photons, and phonons are all massless, quantized carriers of information.
- Gravitons are spin-2 particles which carry information about changes in spacetime curvature (so they communicate changes in gravitation instead of gravitation itself), photons
- Photons are spin-1 particles which carry information about the electromagnetic field.
- Phonons are spin-0 particles which carry information about changes in stesses and pressures in materials.
- Beyond that appropriate bosons do transmit the strong and weak nuclear forces. Also, I thank you for pointing out the practical joke in messenger particle. I will fix that. --EMS | Talk 16:21, 22 November 2006 (UTC)
- Sorry if the joke caused any problems.
- But knowing that gravitons carry information and not any fundamental force, shouldn't they be classified similarly as phonons rather than as carriers of a non existing fundamental force? It might have prevented a lot of confusion since many astrophysicists ignore general relativity just because they think that it will be abolished as soon as the graviton is discovered and "fundamental gravitational attraction" established again as a fundamental force of nature. Something that even Newton didn't believe in. So maybe it's healhtier to make the joke permanent to promote Einstein's discovery? What we are doing here is ignoring for nearly a century a theory that is confirmed by all experiments up to date and predicted discoveries made 90 years after its discovery and contrary to all expectations of experts (eg. "accelerating expansion of the universe" while expets predicted collapsing one, and "anomalous" acceleration of Pioneers while exerts still scratch their heads, and a few not yet published in scientific journals, like eg. local quasars). Jim 21:45, 22 November 2006 (UTC)
- I cannot at all see the geometric interpretation of spacetime being overthrown. Perhaps general relativity will be replaced by something else (which hopefully will be my own theory), but I cannot see the foundation that Einstein laid down being disrupted.
- As for your made-up graviton categories: That was a piece of vandalism IMO. You need to keep things as accurate and informative as possible here. Gravitons are the constituints of gravitational waves. As Moon goes around the Earth for instance, how it tugs on the other planets changes. Those changes are represented by a twisting in the fabric of spacetime, and those twisings propogate outwards as gravitational waves. The analogy to phonons is fairly accurate, since they transmit information on changess in pressure. So gravitons relate to gravitation, but they are transmitters of changes and not of the effect itself. The new result is that photons are a quantum of gravitation, or at least of changes in gravitation. --EMS | Talk 22:41, 22 November 2006 (UTC)
- Photons are a quantum of gravitation?
- IMO keeping gravitons as mediators of one of the fundamental forces is neither informative nor accurate. IMO it is awfully cofusing especially to astrophysicists, and so keeping graviton as mediator of one of fundamental forces is vandalism performed on science. But I guess we have to leave it this way.
- What is your theory? Is it described somewhere on the net and if so, could you supply a link? Jim 06:57, 23 November 2006 (UTC)
- Unfortunately I don't have my own theory to share. Einstein's is enough for me. I'm just in a process of convincing the experts that this theory predicts much more than they think and that they goofed assuming Riemannian metric and that energy can be created permanently from nothing. Jim 10:45, 23 November 2006 (UTC)
- Gravitons, photons, and phonons are all massless, quantized carriers of information.
-
-
[edit] Is gravity like other forces?
I'm concerned about the statement that the standard model is not "background independent." You can certainly formulate the SM in a straightforward way on any spacetime that you like, using standard techniques. I suspect that this statement just spilled over somehow from a critique of string theory -- which is not background independent (as presently understood) since the perturbative series is defined explicitly through fluctuations about Minkowski space. The paragraph then goes on to make a worrying comment that general relativity and the standard model are incompatible. As a classical theory (which is what GR is) there are no problems that aren't already present in flat spacetime. As a quantum theory, perhaps; but GR isn't quantum. Wesino 10:52, 28 November 2006 (UTC)
- Why do you think that GR isn't a quantum theory? What do you think prevents the transmission of energy from one particle to another in quanta? Jim 09:30, 11 March 2007 (UTC)
[edit] How gravitons mediate centrifugal force?
Since centrifugal force is the same kind of force as gravitational force (except for being repulsive in general) then could anybody explain how gravitons madiate this force? What is the mechanism of exchanging gravitons, and between what particles, while something is spinning? Jim 16:07, 13 December 2006 (UTC)
- For over three months nobody could answer such a basic question? How a graviton is going to be recognized when found if no one seems to know its properties? Jim 09:13, 11 March 2007 (UTC)
-
- Maybe it was already detected but not recognized; can it be that the detected form at around 2.587 GeV in the particle spectrum, at the Japanese H-quantum experiments (1970's), may be a (heavier) graviton form?
-
-
- "Another key point which needs consideration is the question of how a quantum
- theory of gravitation which implies a graviton form as a unit of gravitational action can
- account for weak gravitation forces that still depend upon G but arise from mass or its
- energy equivalent that is much smaller than the graviton mass. The answer to this is found
- by recognizing that gravitons, being leptons, can exist in charge pairs and can exchange
- energy as between themselves and another associated particle form. On a steady
- gravitational basis the taon form dominates the action according to the charge continuum
- volume displaced but on a transient basis minor fluctuations in volume of a heavier
- graviton form cater for the balance.
- How then do those gravitons feature in the spectrum of particle physics? Research
- shows that they mainly comprise the taon - the mystery lepton particle that sits alongside
- the muon and the electron in the bottom line of the standard quark picture of the particle
- grid. As to that heavier graviton form it is somewhat elusive but has been detected at
- around 2.587 GeV in the particle spectrum and is best referred to as the ‘Japanese H-
- quantum’ [2]. It exists in anti-particle pairs alongside two anti-particle taon pairs, meaning
- that there is one such heavy graviton for every two taon-gravitons."
- Some related references (provided in the author's writings)
- Particle Data Group, Physics Letters, 170B, 1986 > specifies something, a ‘(2585) bump’, at 2586 +/- 45 MeV;
- Nanjo and Takana, Suppl. Prog. Theor. Phys., 54, 120, 1973 > identifies a mass energy between 2.4 and 2.6 GeV;
- H. Aspden, The Theory of Gravitation, 1966 > theorizes a g-graviton form having a mass of some 5063 electron units (equation 5.19, pp. 76-79), 2.587 GeV.
- Well, WP:OR or not, at least someone tries to openly explain it. Cheers.
-
[edit] Relating the Graviton, the Supergraviton cluster and the fundamental particles
Yet linked to the above explanation, I found also the following brief passage that seems to present a very interesting and deep insight; although it was written 10 years ago, it perhaps may still bring some new light into the Graviton issue:
- "In spite of the resources deployed by high energy particle physicists, they still do not understand why Nature creates mesons such as the mu-meson, otherwise known as the heavy electron or muon. Nor do they recognize that elusive ghost, the signature of the graviton, which occurs at 2.587 GeV. This compares with the electron rest-mass energy of 0.000511 GeV, the muon rest-mass energy of 0.106 GeV or the proton rest-mass energy of 0.938 GeV.
- However, in 1964, the aether theory I had then worked on for ten years revealed the secrets of the mu-meson and, shortly thereafter, in 1965, the 2.587 GeV graviton emerged. It was then a simple matter to evaluate theoretically the precise value of G, the constant of gravitation, expressed in terms of the electron charge-mass ratio and based on energy perturbations of that graviton form.
- At pp. 81-82 of the 1966 edition of my book 'The Theory of Gravitation' I show how three well-known mesons were all unstable spin-off products of a decay involving the 2.587 GeV graviton. I also show, from pure theory based on my interpretation of the structured form of the dynamic aether, how its 5063 ratio of mass to that of the electron emerged from the theoretical analysis. By 1969, when I published 'Physics without Einstein' I was able to point to the relevance of the discovery, as later reported by Krisch et al [Physical Review Letters, 16, 709 (1966)], of the 'largest elementary particle to be discovered'. They write: "We believe that this is firm evidence for the existence of a nucleon resonance with mass 3,245 +/- 10 MeV ... It seems remarkable that such a massive particle should be so stable." This nucleon resonance occurred when protons were fed into a high energy environment in which pi-mesons (pions) were being produced. I immediately saw this as a particle resonance in which that graviton ghost had combined with the proton to shed pions and leave the transient signature as the energy quantum discovered by Krisch et al. Here was proton decay brought about by that graviton ghost! Note that 2.587 GeV plus 0.938 GeV less 0.279 GeV, the rest-mass of two pions, leaves 3.246 GeV.
- Those were the days when particle physicists were probing the scope for creating exotic particles in the energy region we associate with the mass regime of protons, deuterons, and tritons, but nowadays they have gone to the very high energy region where they seek to decipher Nature by discovering particle resonances at mass values akin to those of atoms seated at the middle of the periodic table. This is the region where the supergraviton develops in response to the need for a more effective dynamic balance in that quantum jitter condition of the aether.
- My onward research into that territory led me to discover that, if the gravitational balance were to be a joint effort shared by a group of ghost particles, where the mass and charge displacement properties were pooled, then the ratio of these quantitities which preserved the G-value would demand a unique supergraviton form as well as a super-heavy electron form (identified as the tau-particle or taon). The supergraviton is the cluster of such a group, but a degenerate form involving the mutual annihilation of a particle pair from this cluster leaves a residual neutral particle resonance in the region of 91-92 GeV, evidently the so-called neutral Z-boson which preoccupies much of the attention of theoretical particle physicists at this time.
- The scientific paper disclosing this theory was published in Speculations in Science and Technology, 12, 179-186 (1989). The paper is entitled: 'The Supergraviton and its Technological Connection'. The supergraviton cluster has a rest-mass of 95.18 GeV, corresponding to 102.18 atomic mass units."
- by H. Aspden [3], 1997
Thank you for your attention. Regards. —The preceding unsigned comment was added by 213.58.99.45 (talk) 00:48, 31 March 2007 (UTC).
P.S.: Available data, 2006, from Particle Data Group (website):
[edit] Detecting a Graviton
The statement: "Since gravity is very weak, there is little hope of detecting single gravitons experimentally in the foreseeable future" is a little misleading I think.
Gravitons could be detected in a particle accelerator. If string theory is correct, we could witness the effects a graviton has on nearby objects and then see those effects stop when the graviton travels into another dimension. The best chance for this happening would be at the new LHC at CERN. Here is an article describing how it could be done: [4] (PDF File)
Gravitons could be detected in the near future. —The preceding unsigned comment was added by DavidKelly999 (talk • contribs) 03:06, 27 January 2007 (UTC).