Gram-negative
From Wikipedia, the free encyclopedia
Gram-negative bacteria are those that do not retain crystal violet dye in the Gram staining protocol. Gram-positive bacteria will retain the dark blue dye after an alcohol wash. In a Gram stain test, a counterstain is added after the crystal violet, which colors all Gram-negative bacteria a red or pink color. The test itself is useful in classifying two distinctly different types of bacteria based on structural differences in their cell walls.
Many species of Gram-negative bacteria are pathogenic, meaning they can cause disease in a host organism. This pathogenic capability is usually associated with certain components of Gram-negative cell walls, in particular the lipopolysaccharide (also known as LPS or endotoxin) layer. The LPS is the trigger which the body's innate immune response receptors sense to begin a cytokine reaction. It is this response which begins the inflammation cycle in tissues and blood vessels.
Contents |
[edit] Characteristics
The following characteristics are displayed by Gram-negative bacteria:
- Cell walls only contain a few layers of peptidoglycan (which is present in much higher levels in Gram-positive bacteria)
- Cells are surrounded by an outer membrane of lipopolysaccharide (also known as Lipid A) outside the peptidoglycan layer
- Porins exist in the outer membrane, which act like pores for particular molecules
- There is a space between the layers of peptidoglycan and the secondary cell membrane called the periplasmic space
- The S-layer is directly attached to the outer membrane, rather than the peptidoglycan
- If present, flagella have four supporting rings instead of two
- No teichoic acids or lipoteichoic acids are present
- Lipoproteins are attached to the polysaccharide backbone whereas in Gram-positive bacteria no lipoproteins are present
- Most do not sporulate (Coxiella burnetti forms spore-like structures).
[edit] Example species
The proteobacteria are a major group of Gram-negative bacteria, including Escherichia coli, Salmonella, and other Enterobacteriaceae, Pseudomonas, Moraxella, Helicobacter, Stenotrophomonas, Bdellovibrio, acetic acid bacteria, Legionella and many others. Other notable groups of Gram-negative bacteria include the cyanobacteria, spirochaetes, green sulfur and green non-sulfur bacteria. Crenarchaeota: Unique because most bacteria have gram-positive molecules in their capsules, it has gram-negative.
Medically relevant Gram-negative cocci include three organisms, which cause a sexually transmitted disease (Neisseria gonorrhoeae), a meningitis (Neisseria meningitidis), and respiratory symptoms (Moraxella catarrhalis).
Medically relevant Gram-negative bacilli include a multitude of species. Some of them primarily cause respiratory problems (Hemophilus influenzae, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa), primarily urinary problems (Escherichia coli, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens), and primarily gastrointestinal problems (Helicobacter pylori, Salmonella enteritidis, Salmonella typhi).
Nosocomial gram negative bacteria include Acinetobacter baumanii, which cause bacteremia, secondary meningitis, and ventilator-associated pneumonia in intensive care units of hospital establishments.
[edit] Medical treatment
One of the several unique characteristics of Gram-negative bacteria is the outer membrane. This outer membrane is responsible for protecting the bacteria from several antibiotics, dyes, and detergents which would normally damage the inner membrane or cell wall (peptidoglycan). The outer membrane provides these bacteria with resistance to lysozyme and penicillin. Fortunately, alternative medicinal treatments such as lysozyme with EDTA, and the antibiotic ampicillin have been developed to combat the protective outer membrane of some pathogenic Gram-negative organisms.
[edit] See also
[edit] References
- Baron, Samuel (1996). Medical Microbiology, 4th ed., The University of Texas Medical Branch at Galveston. ISBN 0-9631172-1-1.
- Madigan, Michael; Martinko, John (editors) (2005). Brock Biology of Microorganisms, 11th ed., Prentice Hall. ISBN 0-13-144329-1.
- This article contains material from the Science Primer published by the NCBI, which, as a US government publication, is in the public domain.