Gradient conjecture
From Wikipedia, the free encyclopedia
In mathematics, the gradient conjecture, due to René Thom, was proved in 2000 by K. Kurdyka, T. Mostowski and A. Parusinski. It states that given an analytic function f in Rn and a trajectory x(t) of the gradient vector field of f having a limit point x0 ∈ Rn, there exists a limit (in the projective space PRn) for the secants of x(t) near x0.
[edit] References
- The original statement: R. Thom, Problèmes rencontrés dans mon parcours mathématique: un bilan, Publ. Math. IHES 70 (1989), 200-214.
- The paper where it is proved: Annals of Math. 152 (2000), 763-792. It is available here.