Glyceraldehyde 3-phosphate dehydrogenase

From Wikipedia, the free encyclopedia

glyceraldehyde-3-phosphate dehydrogenase

Enzyme D-glyceraldehyde 3-phosphate dehydrogenase
PDB Code PDB 3GPD
Organism Human
Tissue Skeletal muscle
Symbol(s): GAPDH GAPD
Genetic data
Locus: Chr. 12 p13
Database Links
EC number: 1.2.1.12
Entrez: 2597
OMIM: 138400
RefSeq: NM_002046
UniProt: P04406

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH or G3PDH, although this is less accepted) (EC 1.2.1.9) catalyzes the sixth step of glycolysis, comprised of two reactions.

glyceraldehyde 3-phosphate glyceraldehyde phosphate dehydrogenase D-glycerate 1,3-bisphosphate
image:D-glyceraldehyde-3-phosphate_wpmp.png   image:1,3-bisphospho-D-glycerate_wpmp.png
NAD+ + Pi NADH + H+
NAD+ + Pi NADH + H+
 
 

Compound C00118 at KEGG Pathway Database. Enzyme 1.2.1.12 at KEGG Pathway Database. Reaction R01063 at KEGG Pathway Database. Compound C00236 at KEGG Pathway Database.

The first reaction is the oxidiation of glyceraldehyde 3-phosphate at the carbon 1 position, in which an aldehyde is converted into a carboxylic acid (ΔG°'=-50 kJ/mol (-12kcal/mol)). The energy released by this highly exergonic oxidation reaction drives the endergonic second reaction (ΔG°'=+50 kJ/mol (+12kcal/mol)), in which a molecule of inorganic phosphate is transferred to the GAP intermediate to form a product with high phosphoryl-transfer potential: 1,3-Biphosphoglycerate (1,3-BPG). This is an example of phosphorylation coupled to oxidation, and the overall reaction is somewhat endergonic (ΔG°'=+6.3 kJ/mol (+1.5)). Energy coupling here is made possible by GAPDH.

GAPDH uses covalent catalysis and general base catalysis to decrease the very large and positive activation energy of the second step of this reaction. First, a cysteine residue in the active site of GAPDH attacks the carbonyl group of GAP, creating a hemithioacetal intermediate (covalent catalysis). Next, an adjacent, tightly bound molecule of NAD+ accepts a hydride ion from GAP, forming NADH; GAP is concomitantly oxidized to a thioester intermediate using a molecule of water. This thioester species is much higher in energy than the carboxylic acid species that would result in the absence of GAPDH (the carboxylic acid species is so low in energy that the energy barrier for the second step of the reaction (phosphorylation) would be too great, and the reaction therefore too slow, for a living organism). Donation of the hydride ion by the hemithioacetal is facilitated by its deprotonation by a histidine residue in the enzyme's active site (general base catalysis). Deprotonation encourages the reformation of the carbonyl group in the thioester intermediate and ejection of the hydride ion. NADH leaves the active site and is replaced by another molecule of NAD+, the positive charge of which stabilizes the negatively-charged carbonyl oxygen in the transition state of the next and ultimte step. Finally, a molecule of inorganic phosphate attacks the thioester and forms a tetrahedral intermediate, which then collapses to release 1,3-bisphosphoglycerate, and the thiol group of the enzyme's cysteine residue.

[edit] Sources

  • Voet, D. and Voet, J. G. (2004) Biochemistry, Third Edition. J. Wiley & Sons, Hoboken, NJ.
  • Berg, Jeremy M., Tymoczko, John L., & Stryer, Lubert (2007) Biochemistry, Sixth Edition. W. H. Freeman and Co., NY.
This metabolism related enzyme article is a stub. You can help Wikipedia by expanding it.
This article is of interest to the Metabolic Pathways WikiProject.


 v  d  e 
Glycolysis Metabolic Pathway
Glucose Glucose-6-phosphate Fructose 6-phosphate Fructose 1,6-bisphosphate Dihydroxyacetone phosphate Glyceraldehyde 3-phosphate Glyceraldehyde 3-phosphate
ATP ADP ATP ADP NAD+ + Pi NADH + H+
+ 2
NAD+ + Pi NADH + H+
1,3-Bisphosphoglycerate 3-Phosphoglycerate 2-Phosphoglycerate Phosphoenolpyruvate Pyruvate Acetyl-CoA
ADP ATP H2O ADP ATP CoA + NAD+ NADH + H+ + CO2
2 2 2 2 2 2
ADP ATP H2O
In other languages