Glow plug
From Wikipedia, the free encyclopedia
[edit] Diesel engines
Glow plugs are used to heat the combustion chambers of some diesel engines in cold conditions to help ignition at coldstart. In the tip of the glow plug is a coil of a resistive wire or a filament which heats up when electricity is connected.
Glow plugs are required because diesel engines produce the heat needed to ignite their fuel by the compression of air in the cylinder and combustion chamber. Gasoline engines use an electric spark plug. In cold weather, and when the engine block, engine oil and cooling water are cold, the heat generated during the first revolutions of the engine is conducted away by the cold surroundings, preventing ignition. The glow plugs are switched on prior to turning over the engine to provide heat to the combustion chamber, and remain on as the engine is turned over to ignite the first charges of fuel. Once the engine is running, the glow plugs are no longer needed, although some engines run the glow plugs for between 5 and 10 seconds after starting to ensure smooth and efficient running and sometimes to keep the engine within emissions regulations (combustion efficiency is greatly reduced when the engine is very cold). During this period, the power fed to the glow plugs is greatly reduced to prevent them burning out by overheating.
Indirect-injection diesel engines are less thermally efficient due to the greater surface area of their combustion chambers and so suffer more from cold-start problems. They require longer pre-heating times than direct-injection engines, which often do not need glow plugs at all in temperate or hot climates even for a cold start.
In a typical diesel engine, the glow plugs are switched on for between 10 and 20 seconds prior to starting. Older, less efficient or worn engines may need as much as a minute (60 seconds) of pre-heating.
Large diesel engines as used in heavy construction equipment, ships and locomotives do not need glow plugs. Their cylinders are large enough so that the air in the middle of the cylinder is not in contact with the cold walls of the cylinder, and retains enough heat to allow ignition.
Modern automotive diesel engines with electronic injection systems use various methods of altering the timing and style of the injection process to ensure reliable cold-starting. Glow plugs are fitted, but are rarely used for more than a few seconds.
Glow plug filaments must be made of materials such as platinum and iridium that are resistant both to heat and to oxidation and reduction by the burning mixture. These particular materials also have the advantage of catalytic activity, due to the relative ease with which molecules absorbed on their surfaces can react with each other. This aids or even replaces electrical heating.
[edit] Model engines
In model aircraft, and similar applications , glow plugs are used for starting as well as continuing the power cycle. The glow plug consists of a durable, mostly platinum, helically wound wire filament, within a cylindrical pocket in the plug body, exposed to the combustion chamber. A small direct current voltage (around 1.5 volts) is applied to the glow plug, the engine is then started, and the voltage is removed. The burning of the fuel/air mixture in a glow-plug model engine, which requires methanol for the glow plug to work in the first place, and sometimes with the use of nitromethane for greater power output, occurs due to the catalytic reaction of the methanol vapor to the presence of the platinum in the filament, thus causing the ignition. This keeps the plug's filament glowing hot, and allows it to ignite the next charge. Since the ignition timing is not controlled electrically, as in a spark ignition engine or by fuel injection, as in an ordinary diesel, it must be adjusted by the richness of the mixture, the ratio of nitromethane to methanol, the compression ratio, the cooling of the cylinder head, the type of glow plug, etc. A richer mixture will tend to cool the filiment and so retard ignition, slowing the engine, and a rich mixture also eases starting. After starting the engine can easily be leaned (by adjusting a needle valve in the spraybar) to obtain maximum power.