Talk:Gauss's law
From Wikipedia, the free encyclopedia
It doesn't make sense to speak of a path integral over a surface. A path or curve is by definition one-dimensional; a surface is by definition two-dimensional. Michael Hardy 01:24 Mar 21, 2003 (UTC)
- indeed, must we still use the \oint symbol then?
-
- yes, the \oint symbol is still appropriate. It's not just notation for one-dimensional closed-paths, it's also used for the integral taken over any closed manifold, a closed path is just the one-dimensional case, here, it means a closed 2-mainfold, or surface. Revolver
-
-
- What we really need is the symbol for an integral over a closed surface, which is two integral signs with a loop through both of them: sort of an \oiint, which doesn't exist in standard TeX and LaTeX. (It's in Unicode: U+222F (insert pitch for MathML here).) Mike 21:11, 29 March 2006 (UTC)
-
Contents |
[edit] Differential Form
Shouldn't we include it in differential form too? I am too afraid to make mistakes myself to do it.
[edit] Partial form
is the divergence
D is the electric displacement field (in units of C/m2).
ρ is the free electric charge density (in units of C/m3), not including dipole charges bound in a material
Andries 09:29, 4 Sep 2004 (UTC)
[edit] Please vet
Today's edits by User:128.6.83.17 should be carefully vetted. --Wetman 00:12, 10 Jun 2005 (UTC)
- 2.000? o_O what's the point --210.6.198.242 15:34, 16 Jun 2005 (UTC)
Reply: I believe that there are certain theoretical reasons for insisting that the square be exactly 2, and not just approximately 2. One, I think, has to do with the central nature of the electric force which does not show up with 1/(r^n) type dependence if n is not equal to 2. I could be wrong, so take this with a chunk of salt.
--24.84.203.193 28 June 2005 06:45 (UTC)
- solve gauss's law for a sherical charge its just 2, with no reason to insist on a decimal Cpl.Luke 00:04, 13 July 2005 (UTC)
[edit] Symbols
The symbol Φ should be introduced after the first equation (the integral form). Curiously, all other symbols are introduced.
Could somebody add something about the history of the law? I don't really know much about it, but the only indication that Gauss had anything to do with it (it could just be a name) is the link on the bottom of the page. 134.10.12.13 10:50, 13 February 2007 (UTC)
[edit] Incorrect Equation
Hello. I am looking in my physics text book right now, and it appears the integral for Guass's Law is incorrect. The integral should take the sum of the Magnetic Field not the Electric field as stated in this article. My knowledge is just first year physics, so I wish not to change this article.
134.117.254.250 17:32, 2 March 2007 (UTC) Dave Hawkins
[edit] Correction Not Needed
The statment I made in the last thread was incorrect and I dont know how to dealete it. I apologize for the mistake. Thanks
134.117.254.250Dave Hawkins