Ganglia (software)

From Wikipedia, the free encyclopedia

Ganglia
Latest release: 3.0.4 / December 25, 2006
Use: Distributed monitoring
License: BSD license
Website: www.ganglia.info

Ganglia is a scalable distributed monitoring system for high-performance computing systems such as clusters and grids. It allows the user to remotely view live or historical statistics (such as CPU load averages or network utilization) for all machines that are being monitored.

Contents

[edit] Ganglia

It is based on a hierarchical design targeted at federations of clusters. It relies on a multicast-based listen/announce protocol to monitor state within clusters and uses a tree of point-to-point connections amongst representative cluster nodes to federate clusters and aggregate their state. It leverages widely used technologies such as XML for data representation, XDR for compact, portable data transport, and RRDtool for data storage and visualization. It uses carefully engineered data structures and algorithms to achieve very low per-node overheads and high concurrency. The implementation is robust, has been ported to an extensive set of operating systems and processor architectures, and is currently in use on over 500 clusters around the world. It has been used to link clusters across university campuses and around the world and can scale to handle clusters with 2000 nodes.

The ganglia system is comprised of two unique daemons, a PHP-based web frontend, and a few other small utility programs.

[edit] Ganglia Monitoring Daemon (gmond)

Gmond is a multi-threaded daemon which runs on each cluster node you want to monitor. Installation is easy. You don't have to have a common NFS filesystem or a database backend, install special accounts, maintain configuration files or other annoying hassles.

Gmond has four main responsibilities:

  1. monitor changes in host state
  2. announce relevant changes
  3. listen to the state of all other ganglia nodes via a unicast or multicast channel
  4. answer requests for an XML description of the cluster state.

Each gmond transmits in information in two different ways:

[edit] Ganglia Meta Daemon (gmetad)

Federation in Ganglia is achieved using a tree of point-to-point connections amongst representative cluster nodes to aggregate the state of multiple clusters. At each node in the tree, a Ganglia Meta Daemon (gmetad) periodically polls a collection of child data sources, parses the collected XML, saves all numeric, volatile metrics to round-robin databases and exports the aggregated XML over a TCP sockets to clients. Data sources may be either gmond daemons, representing specific clusters, or other gmetad daemons, representing sets of clusters. Data sources use source IP addresses for access control and can be specified using multiple IP addresses for failover. The latter capability is natural for aggregating data from clusters since each gmond daemon contains the entire state of its cluster.

[edit] Ganglia PHP Web Frontend

The Ganglia web frontend provides a view of the gathered information via real-time dynamic web pages. Most importantly, it displays Ganglia data in a meaningful way for system administrators and computer users. Although the web frontend to ganglia started as a simple HTML view of the XML tree, it has evolved into a system that keeps a colorful history of all collected data.

The Ganglia web frontend caters to system administrators and users. For example, one can view the CPU utilization over the past hour, day, week, month, or year. The web frontend shows similar graphs for memory usage, disk usage, network statistics, number of running processes, and all other Ganglia metrics.

The web frontend depends on the existence of the gmetad which provides it with data from several Ganglia sources. Specifically, the web frontend will open the local port 8651 (by default) and expects to receive a Ganglia XML tree. The web pages themselves are highly dynamic; any change to the Ganglia data appears immediately on the site. This behavior leads to a very responsive site, but requires that the full XML tree be parsed on every page access. Therefore, the Ganglia web frontend should run on a fairly powerful, dedicated machine if it presents a large amount of data.

The Ganglia web frontend is written in the PHP scripting language, and uses graphs generated by gmetad to display history information. It has been tested on many flavours of Unix (primarily Linux) with the Apache webserver and the PHP 4.1 module.

[edit] External links