Gamma distribution

From Wikipedia, the free encyclopedia

Gamma
Probability density function
Probability density plots of gamma distributions
Cumulative distribution function
Cumulative distribution plots of gamma distributions
Parameters k > 0\, shape (real)
\theta > 0\, scale (real)
Support x \in [0; \infty)\!
Probability density function (pdf) x^{k-1} \frac{\exp{\left(-x/\theta\right)}}{\Gamma(k)\,\theta^k}\,\!
Cumulative distribution function (cdf) \frac{\gamma(k, x/\theta)}{\Gamma(k)}\,\!
Mean k \theta\,\!
Median no simple closed form
Mode (k-1) \theta\,\! for k \geq 1\,\!
Variance k \theta^2\,\!
Skewness \frac{2}{\sqrt{k}}\,\!
Excess kurtosis \frac{6}{k}\,\!
Entropy k + \ln\theta + \ln\Gamma(k) \!
+ (1-k)\psi(k) \!
Moment-generating function (mgf) (1 - \theta\,t)^{-k}\,\! for t < 1/\theta\,\!
Characteristic function (1 - \theta\,i\,t)^{-k}\,\!

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions that represents the sum of k exponentially distributed random variables, each of which has mean θ.

Contents

[edit] Characterization

[edit] Probability density function

The probability density function of the gamma distribution can be expressed in terms of the gamma function:

f(x;k,\theta) = x^{k-1} \frac{e^{-x/\theta}}{\theta^k \, \Gamma(k)}   \ \mathrm{for}\ x > 0 \,\!

where k > 0 is the shape parameter and θ > 0 is the scale parameter of the gamma distribution. (This parameterization is used in the infobox and the plots.)

Alternatively, the gamma distribution can be parameterized in terms of a shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate parameter:

g(x;\alpha,\beta) = x^{\alpha-1}  \frac{\beta^{\alpha} \, e^{-\beta\,x} }{\Gamma(\alpha)}  \ \mathrm{for}\ x > 0 \,\!

Both parameterizations are common because either can be more convenient depending on the situation.

[edit] Cumulative distribution function

The cumulative distribution function can be expressed in terms of the incomplete gamma function,

F(x;k,\theta) = \int_0^x f(u;k,\theta)\,du     =\frac{\gamma(k, x/\theta)}{\Gamma(k)} \,\!

[edit] Properties

[edit] Summation

If Xi has a Gamma(αi, β) distribution for i = 1, 2, ..., N, then

\left[ Y = \sum_{i=1}^N X_i \right] \sim \mathrm{Gamma} \left( \sum_{k=1}^N \alpha_i, \beta \right) \,\!

provided all Xi are independent.

The gamma distribution exhibits infinite divisibility.

[edit] Scaling

For any t > 0 it holds that tX is distributed Gamma(ktθ). That demonstrates that θ is a scale parameter.

[edit] Exponential family

The Gamma distribution is a two-parameter exponential family with natural parameters k − 1 and 1 / θ, and natural statistics X and ln(X).

[edit] Information entropy

The information entropy is given by:

\frac{-1}{\theta^k \Gamma(k)} \int_0^{\infty} \frac{x^{k-1}}{e^{x/\theta}} \left[ (k-1)\ln x - x/\theta - k \ln\theta - \ln\Gamma(k) \right] \,dx \!
= -\left[ (k-1) (\ln\theta + \psi(k)) - k - k \ln\theta - \ln\Gamma(k) \right] \!
= k + \ln\theta + \ln\Gamma(k) + (1-k)\psi(k) \!

where ψ(k) is the digamma function.

[edit] Kullback-Leibler divergence

The directed Kullback-Leibler divergence between Gamma(α0, β0) and Gamma(α, β) is given by

\Delta(\alpha,\beta || \alpha_0, \beta_0) = \alpha \log \beta - \alpha_0 \log \beta_0 - \log \frac{ \Gamma(\alpha)  }{ \Gamma(\alpha_0) } + (\alpha - \alpha_0)(\psi(\alpha) - \log \beta) - \alpha \left( 1 - \frac{\beta_0}{\beta} \right)

[edit] Maximum likelihood estimation

The likelihood function for N iid observations (x_1,\ldots,x_N) is

L=\prod_{i=1}^N f(x_i;k,\theta)\,\!

from which we calculate the log-likelihood function

\ell = (k-1) \sum_{i=1}^N \ln{(x_i)} - \sum x_i/\theta - Nk\ln{(\theta)} - N\ln{\Gamma(k)}

Finding the maximum with respect to θ by taking the derivative and setting it equal to zero yields the maximum likelihood estimate of the θ parameter:

\hat{\theta} = \frac{1}{kN}\sum_{i=1}^N x_i \,\!

Substituting this into the log-likelihood function gives:

\ell=(k-1)\sum_{i=1}^N\ln{(x_i)}-Nk-Nk\ln{\left(\frac{\sum x_i}{kN}\right)}-N\ln{(\Gamma(k))} \,\!

Finding the maximum with respect to k by taking the derivative and setting it equal to zero yields:

\ln{(k)}-\psi(k)=\ln{\left(\frac{1}{N}\sum_{i=1}^N x_i\right)}-\frac{1}{N}\sum_{i=1}^N\ln{(x_i)} \,\!

where

\psi(k) = \frac{\Gamma'(k)}{\Gamma(k)} \!

is the digamma function.

There is no closed-form solution for k. The function is numerically very well behaved, so if a numerical solution is desired, it can be found using, for example, Newton's method. An initial value of k can be found either using the method of moments, or using the approximation:

\ln(k)-\psi(k) \approx \frac{1}{k}\left(\frac{1}{2} + \frac{1}{12k+2}\right) \,\!

If we let

s = \ln{\left(\frac{1}{N}\sum_{i=1}^N x_i\right)} - \frac{1}{N}\sum_{i=1}^N\ln{(x_i)},\,\!

then k is approximately

k \approx \frac{3-s+\sqrt{(s-3)^2 + 24s}}{12s}

which is within 1.5% of the correct value.[citation needed] An explicit form for the Newton-Raphson update of this initial guess is given by Choi and Wette (1969) as the following expression

k \leftarrow k - \frac{ \ln k - \psi\left(k\right) - s }{ 1/k - \psi'\left(k\right) }

where \psi'\left(\cdot\right) denotes the trigamma function (the derivative of the digamma function).

The digamma and trigamma functions can be difficult to calculate with high precision. However, approximations known to be good to several significant figures can be computed using the following approximation formulae:

\psi\left(k\right) = \begin{cases} \ln(k) - ( 1 + ( 1 - ( 1/10 - 1 / ( 21 k^2 ) ) / k^2 ) / ( 6 k ) ) / ( 2 k ), \quad k \geq 8 \\ \psi\left( k + 1 \right) - 1/k, \quad k < 8 \end{cases}

and

\psi'\left(k\right) = \begin{cases} ( 1 + ( 1 + ( 1 - ( 1/5 - 1 / ( 7 k^2 ) ) / k^2 ) / ( 3 k ) ) / ( 2 k ) ) / k, \quad k \geq 8 \\ \psi'\left( k + 1 \right) + 1/k^2, \quad k < 8 \end{cases}

For details, see Choi and Wette (1969).

[edit] Generating Gamma random variables

Given the scaling property above, it is enough to generate Gamma variables with β = 1 as we can later convert to any value of β with simple division.

Using the fact that a Gamma(1, 1) distribution is the same as an Exp(1) distribution, and noting the method of generating exponential variables, we conclude that if U is uniformly distributed on (0, 1], then ln(U) is distributed Gamma(1, 1). Now, using the "α-addition" property of Gamma distribution, we expand this result:

\sum_{k=1}^n {-\ln U_k} \sim \mathrm{Gamma}(n, 1),

where Uk are all uniformly distributed on (0, 1] and independent.

All that is left now is to generate a variable distributed as Gamma(δ, 1) for 0 < δ < 1 and apply the "α-addition" property once more. This is the most difficult part.

We provide an algorithm without proof. It is an instance of the acceptance-rejection method:

  1. Let m be 1.
  2. Generate V2m − 1 and V2m — independent uniformly distributed on (0, 1] variables.
  3. If V_{2m - 1} \le v_0, where v_0 = \frac e {e + \delta}, then go to step 4, else go to step 5.
  4. Let \xi_m = \left( \frac {V_{2m - 1}} {v_0} \right) ^{\frac 1 \delta}, \ \eta_m = V_{2m} \xi _m^ {\delta - 1}. Go to step 6.
  5. Let \xi_m = 1 - \ln {\frac {V_{2m - 1} - v_0} {1 - v_0}}, \ \eta_m = V_{2m} e^{-\xi_m}.
  6. If \eta_m > \xi_m^{\delta - 1} e^{-\xi_m}, then increment m and go to step 2.
  7. Assume ξ = ξm to be the realization of Gamma(δ,1).

Now, to summarize,

\theta \left( \xi - \sum _{i=1} ^{[k]} {\ln U_i} \right) \sim \mathrm{Gamma}(k, \theta),

where [k] is the integral part of k, and ξ has been generating using the algorithm above with δ = {k} (the fractional part of k), Uk and Vl are distributed as explained above and are all independent.

[edit] Related distributions

[edit] Specializations

[edit] Others

  • If X has a Gamma(k, θ) distribution, then 1/X has an inverse-gamma distribution with parameters k and θ-1.
  • If X and Y are independently distributed Gamma(α, θ) and Gamma(β, θ) respectively, then X / (X + Y) has a beta distribution with parameters α and β.
  • If Xi are independently distributed Gamma(αi,θ) respectively, then the vector (X1 / S, ..., Xn / S), where S = X1 + ... + Xn, follows a Dirichlet distribution with parameters α1, ..., αn. This holds true for any θ.

[edit] References

[edit] See also

Image:Bvn-small.png Probability distributionsview  talk  edit ]
Univariate Multivariate
Discrete: BenfordBernoullibinomialBoltzmanncategoricalcompound PoissondegenerateGauss-Kuzmingeometrichypergeometriclogarithmicnegative binomialparabolic fractalPoissonRademacherSkellamuniformYule-SimonzetaZipfZipf-Mandelbrot Ewensmultinomialmultivariate Polya
Continuous: BetaBeta primeCauchychi-squareDirac delta functionErlangexponentialexponential powerFfadingFisher's zFisher-TippettGammageneralized extreme valuegeneralized hyperbolicgeneralized inverse GaussianHalf-LogisticHotelling's T-squarehyperbolic secanthyper-exponentialhypoexponentialinverse chi-square (scaled inverse chi-square)• inverse Gaussianinverse gamma (scaled inverse gamma) • KumaraswamyLandauLaplaceLévyLévy skew alpha-stablelogisticlog-normalMaxwell-BoltzmannMaxwell speednormal (Gaussian)normal inverse GaussianParetoPearsonpolarraised cosineRayleighrelativistic Breit-WignerRiceshifted GompertzStudent's ttriangulartype-1 Gumbeltype-2 GumbeluniformVariance-GammaVoigtvon MisesWeibullWigner semicircleWilks' lambda Dirichletinverse-WishartKentmatrix normalmultivariate normalmultivariate Studentvon Mises-FisherWigner quasiWishart
Miscellaneous: Cantorconditionalexponential familyinfinitely divisiblelocation-scale familymarginalmaximum entropyphase-typeposteriorpriorquasisamplingsingular