Talk:Fulldome

From Wikipedia, the free encyclopedia

Contents

[edit] Fulldome Definition

We seem to have settled on a definition that now appears on the main page.

I took out the following from the definition. I may not be appropriate to list the "goal" in the definition of a technical medium, but would be quite appropriate in an expanded theory section --Elumenati 13:48, 19 October 2006 (UTC):

The goal of fulldome video is to create an immersive experience, “exploding the frame” in the words of Ben Shedd, where the frame to which he refers relates to experiences typified by “framed” cinematic art.

[edit] History of Fulldome

Contemporary influences: Early multi-projector film environments, planteriums, flight simulators, the Atmospherium, Cinema 360, All-Sky slide projections, OmniMax, etc.

See timeline below. Need further dates, references, and descriptions for early multi-projector film environments, planteriums, flight simulators, Cinema 360, All-Sky slide projections, OmniMax, dome-based calligraphic scan (projection of light points and lines) and raster scan (projection of TV-like images) video projection devices. Needs descriptions/dates/references from fulldome hardware manufacturers, including Alternate Realities Corporation, Barco, Elumens, Evans & Sutherland, GOTO, LM Productions, Minolta, Obscura Digital, RSA Cosmos, SEOS, Sky-Skan, Spitz, Starlab, Zeiss, etc. --Elumenati 12:01, 21 September 2006 (UTC)

I think we should follow the Timeline of Computing example above, perhaps adding an entry for "Timeline of Immersive Art" that could be referenced by the entry for planetarium, fulldome, and maybe "immersive art" and/or "immersive cinema." Even "virtual reality," eh? At any rate, the current set-up annoys me by coming up with a series of dates in the outline that ends up obscuring the overall content of the site. Ryan Wyatt 07:15, 6 September 2006 (UTC)

Okay, I futzed around with the formatting for the timeline, so it no longer shows up as a bunch of items in the outline. What do y'all think? Ryan Wyatt 22:53, 7 September 2006 (UTC)

I moved most of the following to Timeline of planetariums and linked it into the main planetarium page. 216.73.250.118 15:19, 3 October 2006 (UTC)

[edit] Historic Influences

1500 B.C.E. Egyptian tomb of Senenmut—earliest known depiction of the sky
500 B.C.E. “The Dome of Heaven”—oldest known domed building built by the Etruscans
370 B.C.E. Farnese Atlas, probably the oldest preserved globe is now at the National Museum of Naples. The statue of Atlas is dated 73 BCE. The position of the constellation figures to the globe's equinox date the globe itself to 370 BCE. Two other celestial globes believed to date from Classical times are the Kugel globe, and the Mainz globe.
360 B.C.E. Greek philospher Plato discusses his Allegory of the Cave, in which most humans perceive reality as shadows from projections on the inside of an enclosed space. It is by looking at these projected shadows of objects (and not the objects themselves) that most people try to best understand the world.
250 B.C.E. Archimedes first to demonstrate a cast-metal globe showing the motions of the planets. After he was killed by invading Romans, the device was taken to Rome as booty where it was seen and described by Cicero. Later, Ptolemy’s globe is alleged to have even demonstrated the precession of the equinoxes.
50 B.C.E. The Hathor temple at Dendera dates from Ptolemaic times, probably the first century BCE. The temple contains two well-known, but slightly different representations of the heavens. There is a round zodiac ceiling and a square zodiac in the outer hypostyle hall. The round zodiac ceiling shows the whole sky as it was understood by both Greek and Egyptian cultures.
62 C.E. The Golden House of Nero includes a dome rotating with the sky.
124 C.E. Roman Pantheon constructed
150 C.E. Ptolemy’s Celestial Globe. No globe has been found, but detailed notes its on construction have.
531 C.E. “Palace of Chosros” at Ctesiphon, near modern Baghdad, Iraq, whose massive 85-foot-high brick arch was said to be painted with stars against a blue background, indicating the zodiac.
1584 Celestial Globe of Tycho Brahe. Covered with brass and a wood interior measuring six feet in diameter. Destroyed by fire in 1728, the outer surface was divided by circles to show degrees and minutes and stars visible with the naked eye. A disadvantage to earlier globes was that they showed the sky in reverse, the observer could only view the stars as seen outside the planetsphere.
1654 Goftorp Globe. Constructed in the middle 17th century it was about 4 meters in diameter, weighed over three tons, and could seat several persons inside on a circular bench. The stars were holes in the globe. Rebuilt 1748-52.
1700s Navajo 'Star Ceilings' painted by hand and with 'paint arrows' on overhanging cliff faces in Canyon De Chelly
1846 Carl Zeiss Company founded. Zeiss produced microscopes in his home workshop. Later collaboration with Ernst Abbe resulted in the first optical instruments produced from theory and plans, rather than from trial and error. Later still, Otto Schott, a glassmaker, introduced a process for producing good quality optical glass reliably, and the company established its reputation as a maker of high-quality optical goods.
1900 Paris exposition includes a simulated balloon ride over Paris, filmed in an actual balloon with ten synchronized cameras and projected onto a 360-degree wraparound screen with ten 70-mm film projectors. The process is patented in 1897 under the name Cinéorama
1903 Deutsches Museum, a new institution devoted to science and technology, was the brainchild of Oskar von Miller. 1906 saw the preliminary opening in temporary quarters. The museum eventually was given the beautiful island in the Isar River as its new home in Munich, but the opening planned for 1916 was postponed due to the war. The fully constructed museum finally opened in 1925.
1912 Orbitoscope invented by Prof. E. Hindermann in Basel. (Note: This instrument is driven by springworks and has two planets revolving about a central Sun. A small light bulb on one of the planets projects shadows of the other two objects in the directions they would be seen from that planet, reproducing accurately the retrograde loops and speed changes. This ingenious device is useful for instruction, but of course had many shortcomings)
1913 Atwood Globe built in the Museum of the Chicago Academy of Sciences. With a diameter of almost five meters the Atwood globe shows 692 stars, and a moveable light bulb represents the Sun. Apertures along the ecliptic, which can be uncovered as necessary, represent the planets.
The idea of realistically reproducing the sky in detail is due to astronomer (and then privy counselor) Max Wolf. He was involved with the Deutsches Museum. Wolf had suggested to von Miller the idea of a device for his museum which would reproduce not only the stars but also the planetary motions. Von Miller approached the well-known optical firm of Carl Zeiss in Jena, and they agreed to look into the problem.
1919 Walther Bauersfeld, chief design engineer and later director of Carl Zeiss, hit upon the idea of projection of the celestial objects in a dark room. The original plan had been for some sort of globe similar to that of Gottorp. The new idea simplified things immensely. The mechanism could be on a small scale and easily controllable. Five years of calculations and trials were needed to bring this idea to fruition. Five years, in which Bauersfeld and a large staff of scientists, engineers, and draftsmen considered the astronomical principles involved and the mechanical devices which would realize them. They constructed star plates of film with images of 4500 stars. They found ways of interconnecting the daily and annual motion drives so the planets would stay in proper relative positions. In short they invented the modern projection planetarium.
1923 The “Wonder of Jena” had its first unofficial showings in the 16-meter dome was set up on the roof of the Zeiss factory in Jena, using the first Model I star projector.
The Zeiss Mark I was taken down and shipped to the Deutsches Museum in Munich, Germany, where it was installed in a 10-meter dome, becoming the first planetarium.
Elis Stromgren wrote: “Never before was an instrument created which is so instructive as this; never before one so bewitching; and never before did an instrument speak so directly to the beholder. The machine itself is precious and aristocratic… The planetarium is school, theater, and cinema in one classroom under the eternal dome of the sky.”
1925 World premiere of the “Wonder of Jena” (Das Wunder von Jena) at the Deutsches Museum, Munich, Germany
1927 First planetarium built outside Germany, a temporary installation in Vienna
1928 The Rome planetarium opened
1929 The Moscow planetarium opened
1930 Five new planetariums, including ones in Stockholm, Milan, Hamburg, a new one for Vienna, and the first outside of Europe. In 1928, Max Adler, a Chicago philanthropist, heard of the “Wonder of Jena” and took his wife and an architect to Germany to see it. He was so impressed, he donated to his home city the first planetarium in the Americas. On May 12, 1930, the Adler Planetarium greeted its first visitors.
1935 The planetarium at Griffith Observatory opened on May 14 and the Hayden Planetarium on October 2. During these years, other instruments began to show the sky in Sweden, Belgium, and Holland. Except for the latter, all were Zeiss Mark IIs.
1937 Osaka planetarium opens
1938 Tokyo planetarium opens
1944 The only large planetarium installation by the Carl Zeiss Company was in Goteborg, Sweden. The Mark II projector was removed to the Morehead Planetarium in Chapel Hill, North Carolina, U.S.A., in 1949.
1949 Spitz Laboratories was founded, first in an old factory building and then in an old theater. The first Spitz projector was demonstrated to a meeting of astronomers at Harvard College Observatory in the late-1940s. As the enterprise grew, they later moved to an old snuff factory in Yorklyn, Delaware, and are now located in a spacious new factory in Chadds Ford, Pennsylvania, U.S.A. The company has changed its corporate ownership several times in its brief history and is now owned by Evans & Sutherland.
1952 After the war neither of Zeiss’s two main factories in Oberkochen and Jena were capable of building a planetarium projector. Because of this, the California Academy of Sciences in San Francisco commissioned a comparable, one-of-a-kind projector for the Morrison Planetarium. After four years of design and construction, it was opened on November 6.
1957 Vortex: Experiments in Sound and Light produced by filmmaker Jordan Belson and sound artist Henry Jacobs at the Morrison Planetarium in San Francisco, California. Lasting until 1959, these audio-visual lightshows consist of Belson programming kinetic live abstract visuals and Jacobs programming electronic music and audio experiments [1]
1959 Seizo Goto, a leading Japanese industrialist, used the expertise of his company in the field of telescopes to produce the first Goto planetarium. After trials in Japan, the first Goto in the United States filled the sky with stars in Bridgeport, Connecticut, on January 20, 1962. The Goto company was actually the first to produce a small projector which included planetary motions. Many Goto instruments have since been installed all over the world, a large number in the U.S.A.
1963 Fleischmann Atmospherium Planetarium was built on the University of Nevada-Reno campus. It was the first planetarium in the nation to feature a 360-degree projector capable of providing horizon-to-horizon images and through time-lapse photography showing an entire day’s weather in a few minutes.
Stan Vanderbeek creates dome-based media art installations using multiple film projectors in his Movie-Drome
1964 To the Moon and Beyond Cinema 360 film premieres on the 80-foot Spacearium dome at the 1964 New York World’s Fair. It was produced by Graphic Films Corporation for Cinerama, Inc. and Rod Serling narrates the film.
1965 Minolta Company of Japan, known for high-quality cameras and optics, made some tentative entries into the field in the mid-1960's. Their first planetarium was at DeAnza College in California. By the late 1960's, Minolta had decided to officially enter the planetarium business.
1967 Jeffrey Shaw’s Corpocinema performance incorporated large air-inflated transparent PVC dome onto which film and slides were projected from outside in Rotterdam and Amsterdam
Roger Ferragallo's Total Environment Learning Laboratory (TELL) was conceived as a domed environment for the teaching. The model embraced a hemispheric screen, 14 screens for multiple projection (planar, stereo, film, TV), surround & point to point traveling sound, climate effects, olfactory delivery, total light-color control & hydraulic audience platform. (B. Lamar Johnson, Islands of Innovation Expanding, Glenco Press, 1968)
1973 The first OmniMax 70-mm film-based fisheye projection theater (later called the Imax Dome) opens at the Reuben H. Fleet Science Center in San Diego, California, U.S.A. OmniMax films shown were Voyage to the Outer Planets and Garden Isle. The former used spaceship and landscape models, with planet globes painted by Don Moore. The latter film featured helicopter shots of Hawaii, presented in stunning immersive perspective. Sadly, no other exclusively fulldome 70-mm films were made for tilted domes after the debut of the medium.

[edit] Fulldome Video History

1983 First Evans & Sutherland Digistar I calligraphic scan (projection of light points and lines - also known as vector scan) planetarium projector at the Science Museum of Virginia in Richmond, Virginia, U.S.A.
1992 First dome-based vector/calligraphic scan scientific visualization system at SIGGRAPH, installed by the North Carolina Supercomputing Center using a reprogrammed Digistar I for molecular visualization
1994 Alternate Realities Corporation premieres their first VisionDome prototype at Glaxo Inc. in Research Triangle Park, North Carolina, U.S.A. Developed at the North Carolina Supercomputing Center, the VisionDome uses a raster scan projector (full color video) and fisheye lens to project interactive 3D graphics onto a 5 meter dome. [2]
1995 First Evans & Sutherland Digistar II calligraphic scan planetarium projector opens at the London Planetarium, U.K.
British Telecom uses a vertical five-meter Alternate Realities Corporation VisonDome for its “Shared Spaces” media environment research programme, incorporating computer graphics, virtual landscapes, data graphics, video, composited live action. and spatialized sound. [3]
1996 July 13-19: First Goto Virtuarium demonstrated at the International Planetarium Society Conference in Osaka, Japan
October 26-29: Evans & Sutherland StarRider demonstrated at ASTC in Pittsburgh, Pennsylvania, U.S.A.
1998 May 22 - September 30: The Oceania pavilion opens at the EXPO 98 in Lisbon, Portugal. Among numerous virtual reality exhibits, it includes The Artefact Room, a 7-metre dome VisionDome theater with interactive 3D animations of a fly-through of Atlantis that are controlled by 40 participants simultaneously. [4]
June 28 - July 2: Sky-Skan premieres SkyVision at the International Planetarium Society Conference in London, U.K. First astronomical digital fulldome animation shown to audiences there, “Pillars of Creation” by Don Davis, as well as a Space Station animation by Home Run Pictures.
December: Vertical dome installation by SGI and Trimension at University of Teesside, U.K. [5]
1999 Adler Planetarium reopens in Chicago, Illinois, U.S.A., with an Evans & Sutherland StarRider system
Evans & Sutherland premiers their first linear playback show "We Take You There" at SIGGRAPH '99
2000 Hayden Planetarium reopens at the American Museum of Natural History in New York, New York, U.S.A., with a Silicon Graphics Onyx 2 and Trimension video system
2003 Clark Planetarium (formerly Hansen Planetarium) reopens in Salt Lake City, Utah, U.S.A., with an Evans & Sutherland Digistar 3
Adler Planetarium upgrades their StarRider to the new Evans & Sutherland Digistar 3 system. The mini-dome also opens in their production department running both the Digistar 3 SP and Producer systems.
2004 First DomeFest held at the LodeStar Astronomy Center in Albuquerque, New Mexico, U.S.A.
December: Beijing Planetarium opens with the first fulldome laser display (Zeiss ADLIP)
2005 GOTO installs the first complete fulldome sphere at EXPO 2005 in Aichi, Japan

[edit] Fulldome Technology

LM Productions LLP of Eastbourne in the UK now offer a unique mobile solution for full dome entertainment systems with our unique StratoSphere product, in fact LM Productions offer full show packages called StratoFantasia productions and have a large media selction. Our StratoSpheres range from 30ft to over 70ft and are usable as both a venue or a large centre piece for a show. LM Productions offer cutting edge video servers with full dome capabilities.

More details at www.lm-productions.com and www.stratosphere.info

[edit] Fulldome Applications

Generally divided into real-time interactive computer graphics, pre-rendered computer graphics, live capture, and compositied.

[edit] Examples of real-time applications

  • Digistar 3: Visualization platform from Evans & Sutherland
  • SciDome: Planetarium system from Spitz Inc powered by Starry Night
  • Uniview: Visualization platform from Sciss based on NASA/American Museum of Natural History Digital Universe dataset

[edit] Examples of pre-rendered playback applications

[edit] Examples of real-time shows

  • Bodyworks (2001, Exploration Place and Evans & Sutherland)

[edit] Examples of pre-rendered movies

  • Cosmic Collisions (2006, American Museum of Natural History Rose Center for Earth and Space)
  • Molecularium (2005, Rensselaer Polytechnic Institute and Nanotoons)
  • Search for Life (2002, American Museum of Natural History Rose Center for Earth and Space)
  • Force 5 (2001, Houston Museum of Natural Science and Evans & Sutherland)

[edit] Art Installations

[edit] Fulldome theaters and installations

Include GPS coordinates for geospatial visualization

Also see the Fulldome Theater Compendium ONLINE! at Loch Ness Productions' Web site.

[edit] Links to Fulldome resources

[edit] Fulldome Software

[edit] References

  1. ^ Youngblood, Gene. Expanded Cinema. 1st ed. New York: Dutton, 1970. 157-177.; Igliori 1986, p.269).
  2. ^ A Larger Vision of Virtual Reality. The News and Observer. Raleigh, North Carolina. Saturday, December 31st, 1994. Front page of Section D: Business.
  3. ^ http://dev.twinisles.com/research/bsvr.htm#vd and Alternate Realities Launches R&D Project. Triangle Business Journal. August 23rd, 1996.
  4. ^ The WAVE Report on Digital Media. Issue #907, November 3, 1998.
  5. ^ http://vr.tees.ac.uk/presentations/Bradford/bradford.htm

For details, see Wikipedia:Footnotes and Help:Footnotes.

--Elumenati 23:21, 2 September 2006 (UTC)