Field line
From Wikipedia, the free encyclopedia
A field line is a locus that is defined by a vector field and a starting location within the field. A vector field defines a direction at all points in space; a field line may be constructed by tracing a path in the direction of the vector field.
Field lines are useful for visualizing vector fields, which consist of a separate individual vector for every location in space. If the vector field describes a velocity field, then the field lines follow stream lines in the flow. Perhaps the most familiar example of a vector field described by field lines is the magnetic field, which is often depicted using field lines emanating from a magnet.
A complete description of the geometry of all the field lines of a vector field is exactly equivalent to a complete description of the vector field itself.
Field lines can be used to trace familiar quantities from vector calculus: divergence may be seen as a net geometric divergence of field lines away from (or convergence toward) a small region, and the curl may be seen as a helical shape of field lines.
While field lines are a "mere" mathematical construction, in some circumstance they take on physical significance. In the context of plasma physics, electrons or ions that happen to be on the same field line interact strongly, while particles on different field lines in general do not interact.
[edit] See also
- External ray — field lines of Douady-Hubbard potential of Mandelbrot set or filled-in Julia sets