EXPSPACE

From Wikipedia, the free encyclopedia

In complexity theory, EXPSPACE is the set of all decision problems solvable by a deterministic Turing machine in O(2p(n)) space, where p(n) is a polynomial function of n. (Some authors restrict p(n) to be a linear function, but most authors instead call the resulting class ESPACE.)

In terms of DSPACE,

\mbox{EXPSPACE} = \bigcup_{k\in\mathbb{N}} \mbox{DSPACE}(2^{n^k})

A decision problem is EXPSPACE-complete if it is in EXPSPACE, and every problem in EXPSPACE has a polynomial-time many-one reduction to it. In other words, there is a polynomial-time algorithm that transforms instances of one to instances of the other with the same answer. EXPSPACE-complete problems might be thought of as the hardest problems in EXPSPACE.

EXPSPACE is a strict superset of PSPACE, NP, and P and is believed to be a strict superset of EXPTIME.

An example of an EXPSPACE-complete problem is the problem of recognizing whether two regular expressions represent different languages, where the expressions are limited to four operators: union, concatenation, the Kleene star (zero or more copies of an expression), and squaring (two copies of an expression).

If the Kleene star is left out, then that problem becomes NEXPTIME-complete, which is like EXPTIME-complete, except it is defined in terms of non-deterministic Turing machines rather than deterministic.

It has also been shown by L. Berman in 1980 that the problem of verifying/falsifying any first-order statement about real numbers that involves only addition and comparison (but no multiplication) is in EXPSPACE.

[edit] See also

[edit] References

  • L. Berman The complexity of logical theories, Theoretical Computer Science 11:71-78, 1980.
  • Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing. ISBN 0-534-94728-X.  Section 9.1.1: Exponential space completeness, pp.313–317. Demonstrates that determining equivalence of regular expressions with exponentiation is EXPSPACE-complete.


In other languages