Exchange matrix

From Wikipedia, the free encyclopedia

In mathematics, especially linear algebra, the exchange matrix is a special case of a permutation matrix, where the 1 elements reside on the antidiagonal and all other elements are zero. In other words, it is a 'row-reversed' or 'column-reversed' version of the identity matrix.


J_{2\times 2}=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix};\quad J_{3\times 3}=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad J_{n\times n}=\begin{pmatrix}   0      & 0      & \cdots & 0      & 0      & 1      \\   0      & 0      & \cdots & 0      & 1      & 0      \\   0      & 0      & \cdots & 1      & 0      & 0      \\   \vdots & \vdots &        & \vdots & \vdots & \vdots \\    0      & 1      & \cdots & 0      & 0      & 0      \\   1      & 0      & \cdots & 0      & 0      & 0       \end{pmatrix}.


[edit] Definition

If J is an n×n exchange matrix, then the elements of J are defined such that:


J_{i,n-i} = 1;\quad
J_{i,j} = 0\quad (j \ne n - i).\quad


[edit] Properties

  • JT = J.
  • Jn = I for even n; Jn = J for odd n, where n is any integer. Thus J is an involutary matrix; that is, J−1 = J.
  • The trace of J is 1 if n is odd, and 0 if n is even.

[edit] Relationships

  • Any matrix A satisfying the condition AJ = JA is said to be centrosymmetric.