Erosion (morphology)

From Wikipedia, the free encyclopedia

Erosion: Let A denote a binary image and B denote a structuring element. Then the erosion of A by B is given by: A \ominus B = \{  z|(B)_z \subset A  \}

Suppose A is a 13 * 13 matrix and B is a 5 * 1 matrix:

    0 0 0 0 0 0 0 0 0 0 0 0 0  
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 


The Erosion of A by B is given by

    0 0 0 0 0 0 0 0 0 0 0 0 0  
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0            
    0 0 0 1 1 1 1 1 1 1 0 0 0            
    0 0 0 0 0 0 0 0 0 0 0 0 0            
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 

This means that only when B is completely contained inside A that the pixels values are retained, else it gets deleted or in other words it gets eroded.

[edit] See also


Image:Mathapplied-stub_ico.png This applied mathematics-related article is a stub. You can help Wikipedia by expanding it.