Engineering economics

From Wikipedia, the free encyclopedia

Engineering economics, previously known as engineering economy, is a subset of economics for application to engineering projects. Engineers seek solutions to problems, and the economic viability of each potential solution is normally considered along with the technical aspects.

In U.S. undergraduate engineering curricula, engineering economics is often a required course. It is a topic on the Fundamentals of Engineering examination, and questions might also be asked on the Principles and Practice of Engineering examination; both are part of the Professional Engineering registration process.

Considering the time value of money is central to most engineering economic analyses. Cash flows are discounted using an interest rate, i, except in the most basic economic studies.

For each problem, there are usually many possible alternatives. One option that must be considered in each analysis, and is often the choice, is the do nothing alternative. The opportunity cost of making one choice over another must also be considered. There are also noneconomic factors to be considered, like color, style, public image, etc., and are called attributes.[1]

Costs as well as revenues are considered, for each alternative, for an analysis period that is either a fixed number of years or the estimated life of the project. The salvage value is often forgotten, but is important, and is either the net cost or revenue for decommissioning the project.

Some other topics that may be addressed in engineering economics are inflation, uncertainty, replacements, depreciation, resource depletion, taxes, tax credits, accounting, cost estimations, or capital financing.

[edit] Typical analyses

  • Simple payback (SPB)
  • Discounted payback (DPB)
  • Present worth (PW)
  • Annual worth (AW)
  • Future worth (FW)
  • Capitalized worth (CW)
  • Internal rate of return (IRR)
  • External rate of return (ERR)
  • Minimum attractive rate of return (MARR)
  • Life cycle cost (LCC)
  • Life cycle savings (LCS)
  • Benefit to cost ratio (B/C)

[edit] Other fundamental engineering topics

[edit] References

  1. ^ Engineering Economy, 11th Ed., Sullivan, Bontadelli, and Wicks, Prentice-Hall, New York, 2000


 v  d  e Major fields of technology
Applied Science Artificial intelligenceCeramic engineeringComputing technologyElectronicsEnergyEnergy storageEngineering physicsEnvironmental technologyMaterials scienceMaterials engineeringMicrotechnologyNanotechnologyNuclear technologyOptical engineeringQuantum computing
Sports and recreation Camping equipmentPlaygroundSportSports equipment
Information and communication CommunicationGraphicsMusic technologySpeech recognitionVisual technology
Industry ConstructionFinancial engineeringManufacturingMachineryMining
Military BombsGuns and ammunitionMilitary technology and equipmentNaval engineering
Domestic Domestic appliancesDomestic technologyEducational technologyFood technology
Engineering Aerospace engineeringAgricultural engineeringArchitectural engineeringBioengineeringBiochemical engineeringBiomedical engineeringChemical engineeringCivil engineeringComputer engineeringConstruction engineeringElectrical engineeringElectronics engineeringEnvironmental engineeringIndustrial engineeringMaterials engineeringMechanical engineeringMechatronics engineeringMetallurgical engineeringMining engineeringNuclear engineeringPetroleum engineeringSoftware engineeringStructural engineeringTissue engineering
Health and Safety Biomedical engineeringBioinformaticsBiotechnologyCheminformaticsFire protection technologyHealth technologiesPharmaceuticalsSafety engineeringSanitary engineering
Transport AerospaceAerospace engineeringMarine engineeringMotor vehiclesSpace technologyTransport
In other languages