Divided power structure

From Wikipedia, the free encyclopedia

In commutative algebra, a divided power structure is a way of making sense of expressions of the form xn / n! which is meaningful even when it is not possible to actually divide by n!.

Contents

[edit] Definition

Let A be a commutative ring with an ideal I. A divided power structure (or PD-structure, after the French puissances divisées) on I is a collection of maps \gamma_n : I \to A for n=0, 1, 2, ... such that:

  1. γ0(x) = 1 and γ1(x) = x for x \in I, while \gamma_n(x) \in I for n > 0.
  2. \gamma_n(x + y) = \sum_{i=0}^n \gamma_{n-i}(x) \gamma_i(y) for x, y \in I.
  3. γnx) = λnγn(x) for \lambda \in A, x \in I.
  4. γm(xn(x) = ((m,n))γm + n(x) for x \in I, where ((m, n)) = \frac{(m+n)!}{m! n!} is an integer.
  5. γnm(x)) = Cn,mγmn(x) for x \in I, where C_{n, m} = \frac{(mn)!}{(m!)^n n!} is an integer.

For convenience of notation, γn(x) is often written as x[n] when it is clear what divided power structure is meant.

The term divided power ideal refers to an ideal with a given divided power structure, and divided power ring refers to a ring with a given ideal with divided power structure.

[edit] Examples

  • If A is an algebra over the rational numbers Q, then every ideal I has a unique divided power structure where \gamma_n(x) = \frac{1}{n!} \cdot x^n. (The uniqueness follows from the easily verified fact that in general, xn = nn(x).) Indeed, this is the example which motivates the definition in the first place.
  • If A is a ring of characteristic p > 0, where p is prime, and I is an ideal such that Ip = 0, then we can define a divided power structure on I where \gamma_n(x) = \frac{1}{n!} x^n if n < p, and γn(x) = 0 if n \geq p. (Note the distinction between Ip and the ideal generated by xp for x \in I; the latter is always zero if a divided power structure exists, while the former is not necessarily zero.)
  • If M is an A-module, let S^\cdot M denote the symmetric algebra of M over A. Then its dual (S^\cdot M) \check{~} = Hom_A(S^\cdot M, A) has a canonical structure of divided power ring. In fact, it is canonically isomorphic to a natural completion of \Gamma_A(\check{M}) (see below) if M has finite rank.


[edit] Constructions

If A is any ring, there exists a divided power ring

A \langle x_1, x_2, \ldots, x_n \rangle

consisting of divided power polynomials in the variables

x_1, x_2, \ldots, x_n,

that is sums of divided power monomials of the form

c x_1^{[i_1]} x_2^{[i_2]} \cdots x_n^{[i_n]}

with c \in A. Here the divided power ideal is the set of divided power polynomials with constant coefficient 0.

More generally, if M is an A-module, there is a universal A-algebra, called

ΓA(M),

with PD ideal

Γ + (M)

and an A-linear map

M \to \Gamma_+(M).

(The case of divided power polynomials is the special case in which M is a free module over A of finite rank.)

If I is any ideal of a ring A, there is a universal construction which extends A with divided powers of elements of I to get a divided power envelope of I in A.

[edit] Applications

The divided power envelope is a fundamental tool in the theory of PD differential operators and crystalline cohomology, where it is used to overcome technical difficulties which arise in positive characteristic.

[edit] References

  • Pierre Berthelot and Arthur Ogus, Notes on Crystalline Cohomology. Annals of Mathematics Studies. Princeton University Press, 1978.