Diode bridge

From Wikipedia, the free encyclopedia

Three bridge rectifiers.  The size is generally related to the current handling capability.
Three bridge rectifiers. The size is generally related to the current handling capability.

A diode bridge or bridge rectifier is an arrangement of four diodes connected in a bridge circuit as shown below, that provides the same polarity of output voltage for any polarity of the input voltage. When used in its most common application, for conversion of alternating current (AC) input into direct current (DC) output, it is known as a bridge rectifier. The bridge recitifier provides full wave rectification from a two wire AC input (saving the cost of a center tapped transformer) but has two diode drops rather than one reducing efficiency over a center tap based design for the same output voltage.


Diodes; the one on the left is a diode bridge
Diodes; the one on the left is a diode bridge
Schematic of a diode bridge
Schematic of a diode bridge

The essential feature of this arrangement is that for both polarities of the voltage at the bridge input, the polarity of the output is constant.

[edit] Basic operation

When the input connected at the left corner of the diamond is positive with respect to the one connected at the right hand corner, current flows to the right along the upper colored path to the output, and returns to the input supply via the lower one.

Image:Diodebridge2.png

When the right hand corner is positive relative to the left hand corner, current flows along the upper colored path and returns to the supply via the lower colored path.

Image:Diodebridge3.png

AC, half-wave and full wave rectified signals
AC, half-wave and full wave rectified signals

In each case, the upper right output remains positive with respect to the lower right one. Since this is true whether the input is AC or DC, this circuit not only produces DC power when supplied with AC power: it also can provide what is sometimes called "reverse polarity protection". That is, it permits normal functioning when batteries are installed backwards or DC input-power supply wiring "has its wires crossed" (and protects the circuitry it powers against damage that might occur without this circuit in place).

Prior to availability of integrated electronics, such a bridge rectifier was always constructed from discrete components. Since about 1950, a single four-terminal component containing the four diodes connected in the bridge configuration became a standard commercial component and is now available with various voltage and current ratings.

[edit] Output smoothing

For many applications, especially with single phase AC where the full-wave bridge serves to convert an AC input into a DC output, the addition of a capacitor may be important because the bridge alone supplies an output voltage of fixed polarity but pulsating magnitude (see photograph above).

Image:Diodebridge4.png

The function of this capacitor, known as a 'smoothing capacitor' (see also filter capacitor) is to lessen the variation in (or 'smooth') the raw output voltage waveform from the bridge. One explanation of 'smoothing' is that the capacitor provides a low impedance path to the AC component of the output, reducing the AC voltage across, and AC current through, the resistive load. In less technical terms, any drop in the output voltage and current of the bridge tends to be cancelled by loss of charge in the capacitor. This charge flows out as additional current through the load. Thus the change of load current and voltage is reduced relative to what would occur without the capacitor. Increases of voltage correspondingly store excess charge in the capacitor, thus moderating the change in output voltage / current.

The capacitor and the load resistance have a typical time constant τ = RC where C and R are the capacitance and load resistance respectively. As long as the load resistor is large enough so that this time constant is much longer than the time of one ripple cycle, the above configuration will produce a well smoothed DC voltage across the load resistance. In some designs, a series resistor at the load side of the capacitor is added. The smoothing can then be improved by adding additional stages of capacitor–resistor pairs, often done only for sub-supplies to critical high-gain circuits that tend to be sensitive to supply voltage noise.

Output can also be smoothed using a choke, a coil of conductor enclosed by an iron frame (similar to a transformer in construction). This tends to keep the current (rather than the voltage) constant. Due to the relatively high cost of an effective choke compared to a resistor and capacitor this is not employed in modern equipment. Some early console radios created the speaker's constant field with the current from the high voltage ("B +") power supply, which was then routed to the consuming circuits, rather than using a permanent magnet to create the speaker's constant magenetic field. The speaker field coil thus acted as a choke.

[edit] Polyphase diode bridges

This construction can be generalized to rectify polyphase AC inputs. For instance, for three-phase AC, a full wave bridge rectifier consists of six diodes.

Three Phase Bridge Rectifier for a wind turbine.
Three Phase Bridge Rectifier for a wind turbine.
Three Phase Bridge Rectifier for wind turbine.
Three Phase Bridge Rectifier for wind turbine.