Delta-v budget
From Wikipedia, the free encyclopedia
Delta-v budget (or velocity change budget) is a term used in astrodynamics and aerospace industry for velocity change (or delta-v) requirements for the various propulsive tasks and orbital maneuvers over phases of the space mission.
Sample delta-v budget will enumerate various classes of manoeuvres, delta-v per manoeuvre, number of manoeuvres required over the time of the mission.
In the absence of an atmosphere and landings where the ground is hit with some speed, the delta-v is the same for changes in orbit the other way around: gaining and losing speed cost an equal effort.
Contents |
[edit] Launch/landing budget
- Launch to LEO — this not only requires an increase of velocity from 0 to 7.8 km/s, but also typically 1.5–2 km/s for atmospheric drag and gravity drag
- Re-entry from LEO
[edit] Stationkeeping budget
Maneuver | Average delta-v per year [m/s] | Maximum per year [m/s] | |||
---|---|---|---|---|---|
Drag compensation in 400–500 km LEO | <25 | <100 | |||
Drag compensation in 500–600 km LEO | < 5 | < 25 | |||
Drag compensation in > 600 km LEO | < 7.5 | ||||
Station-keeping in Geostationary orbit | 50 – 55 | ||||
Station-keeping in L1/L2 | 30 – 100 | ||||
Station-keeping in Moon orbit | 0 [1] – 400 | ||||
Attitude control (3-axis) | 2 – 6 | ||||
Spin-up or despin | 5 – 10 | ||||
Stage booster separation | 5 – 10 | ||||
Momentum wheel unloading | 2 – 6 | ||||
[edit] Earth-Moon space budget
Delta-v needed to move inside Earth Moon system (speeds lower then Escape velocity) in km/s
From\To | LEO-Ken | LEO-Eq | GEO | EML-1 | EML-2 | EML-4/5 | LLO | Moon | C3 |
---|---|---|---|---|---|---|---|---|---|
Earth | 9.30 - 10.00 | ||||||||
Low Earth Orbit (LEO-Ken) | 4.24 | 4.33 | 3.77 | 3.43 | 3.97 | 4.04 | 5.93 | 3.22 | |
Low Earth Orbit (LEO-Eq) | 4.24 | 3.90 | 3.77 | 3.43 | 3.99 | 4.04 | 5.93 | 3.22 | |
Geostationary Orbit (GEO) | 2.06 | 1.63 | 1.38 | 1.47 | 1.71 | 2.05 | 3.92 | 1.30 | |
Lagrangian point 1 (EML-1) | 0.77 | 0.77 | 1.38 | 0.14 | 0.33 | 0.64 | 2.52 | 0.14 | |
Lagrangian point 2 (EML-2) | 0.33 | 0.33 | 1.47 | 0.14 | 0.34 | 0.64 | 2.52 | 0.14 | |
Lagrangian point 4/5 (EML-4/5) | 0.84 | 0.98 | 1.71 | 0.33 | 0.34 | 0.98 | 2.58 | 0.43 | |
Low Lunar orbit (LLO) | 1.31 | 1.31 | 2.05 | 0.64 | 0.65 | 0.98 | 1.87 | 1.40 | |
Moon (Moon) | 2.74 | 2.74 | 3.92 | 2.52 | 2.53 | 2.58 | 1.87 | 2.80 | |
Earth Escape velocity (C3) | 0.00 | 0.00 | 1.30 | 0.14 | 0.14 | 0.43 | 1.40 | 2.80 |
[edit] Interplanetary budget
From | To | delta-v in km/s |
---|---|---|
Earth Escape velocity (C3) | Mars Transfer Orbit | 0.6 |
Mars Transfer Orbit | Mars Capture Orbit | 0.9 |
Mars Capture Orbit | Deimos Transfer Orbit | 0.2 |
Deimos Transfer Orbit | Deimos surface | 0.7 |
Deimos Transfer Orbit | Phobos Transfer Orbit | 0.3 |
Phobos Transfer Orbit | Phobos surface | 0.5 |
Mars Capture Orbit | Low Mars Orbit | 1.4 |
Low Mars Orbit | Mars surface | 4.1 |
Earth Escape velocity (C3) | Closest NEO Asteroids[4] | 0.8 - 2.0 |
According to Marsden and Ross, "The energy levels of the Sun-Earth L1 and L2 points differ from those of the Earth-Moon system by only 50 m/s (as measured by maneuver velocity)."[5]
[edit] Delta-vs around the Solar System
[edit] Abbreviations used
C3 | Escape orbit |
GEO | Geosynchronous orbit |
GTO | Geostationary transfer orbit |
L5 | Earth-Moon fifth Lagrangian point |
LEO | Low Earth orbit |