Daylighting

From Wikipedia, the free encyclopedia

Daylighting is the practice of placing windows, or other transparent media, and reflective surfaces so that, during the day, natural light provides effective internal illumination.

Within the overall architectural design of a building, particular attention is given to daylighting when the aim is to maximize visual comfort, productivity, or to reduce energy use. Energy savings from daylighting are achieved in two ways--either from the reduced use of electric lighting, or from passive solar heating or cooling.

Electric lighting energy savings can accrue because occupants choose not to switch their lights on, or because an automatic lighting control system ("photocontrol system") switches the lights off or dims them to a lower level.

In passive solar technique, buildings are designed such as to account for local climate, in particular the luminance of the sky. For instance, in cooler parts of northern countries with largely overcast sky, a house will be designed with minimal windows on the north side but more and larger windows on the south side. This is because in the Northern Hemisphere, above the Tropic of Cancer, there is no direct sunlight on the north wall of a house from the autumnal equinox to the spring equinox, north-side windows are ineffective at daylighting. South-side windows receive at least some direct sunlight on any sunny day of the year, so they are effective at daylighting areas of the house adjacent to the windows. One disadvantage of relying on conventional window space for daylighting is that, especially during mid-winter, it tends to be highly directional light that casts deep shadows.

Contents

[edit] Windows

Windows are the most common way to admit daylight into a space. Their vertical orientation means that they selectively admit sunlight and diffuse daylight at different times of the day and year. Therefore windows on multiple orientations must usually be combined to produce the right mix of light for the building, depending on the climate and latitude.

[edit] Light reflectors

Adjustable light reflector
Adjustable light reflector

Once in extensive use in office buildings, the adjustable light reflector is seldom seen, having been supplanted by a combination of other methods in concert with artificial illumination. The reflector found favor where the choices of artificial light provided poor illumination compared to modern electric lighting.

[edit] Light shelfs

An effective way to enhance the lighting from windows on the equator-facing side of a structure is to replace a white or reflective metal light shelf outside the window. Usually the window will be protected from direct summer season sun by a projecting eave. The light shelf projects beyond the shadow created by the eave and reflects sunlight upward to illuminate the ceiling. This reflected light can contain little heat content and the reflective illumination from the ceiling will typically reduce deep shadows, reducing the need for general illumination.

[edit] Skylights

Skylights are often used for daylighting. Skylights admit more light per unit area than windows, and distribute it more evenly over a space. They are therefore a good choice when daylight is being used to illuminate a space. The optimum number of skylights (usually quantified as "effective aperture") varies according to climate, latitude, and the characteristics of the skylight, but is usually 1-10% of floor area. The thermal performance of skylights is affected by stratification, i.e. the tendency of warm air to collect in the skylight wells, which in cool climates increases the rate of heat loss.

The amount of light skylights deliver peaks around midday, when the additional light and heat it provides is least needed. Some skylight designs use domed or pyramidal shapes along with prismatic or other light-redirecting glazings to achieve more even light levels through the course of a day. Poorly constructed skylights may have leak problems and single-paned ones may weep with condensation. Using skylights with at least two panes and a heat reflecting coating will increase their energy efficiency.

[edit] Light tubes

Another type of device used are light tubes, also called solar tubes, placed into a roof and admitting light to a focused area of the interior. These somewhat resemble recessed light fixtures in the ceiling. They do not allow as much heat transfer as skylights because they have less exposed surface area. It is also easier to retrofit light tubes into existing buildings, especially those with deep roof constructions.

[edit] Clerestory windows

Another important element in creating daylighting is the use of clerestory windows. These are high, vertically-placed windows. They can be used to increase direct solar gain when oriented towards the south in the Northern Hemisphere, and towards the north in the Southern Hemisphere. When facing toward the sun, clerestories and other windows may admit unacceptable glare. In the case of a passive solar house, clerestories may provide a direct light path to north-side (in the northern hemisphere; south-side in the southern) rooms that otherwise would not be illuminated. Alternatively, clerestories can be used to admit diffuse daylight (from the north in the northern hemisphere) that evenly illuminates a space such as a classroom or office.

Often, clerestory windows also shine onto interior wall surfaces painted white or another light color. These walls are placed so as to reflect indirect light to interior areas where it is needed. This method has the advantage of reducing the directionality of light to make it softer and more diffuse, reducing shadows.

[edit] See also

[edit] External link

In other languages