User:David.Throop/Essential fatty acid interactions

From Wikipedia, the free encyclopedia

The actions of the ω-3 and ω-6 essential fatty acids (EFAs) are best characterized by their interactions; they cannot be understood separately.

For introductory details to this topic, including terminology and ω-3 / ω-6 nomenclature, see the main articles at Essential fatty acid and Eicosanoid.

Arachidonic acid (AA) is a 20-carbon ω-6 essential fatty acid. It sits at the head of the "arachidonic acid cascade" – more than twenty different signalling paths that control a bewildering array of bodily functions, but especially those functions involving inflammation and the central nervous system.(Piomelli, 2000) Most AA in the human body derives from dietary linoleic acid (another essential fatty acid, 18:3 ω-6), which comes both from vegetable oils and animal fats.

In the inflammatory response, two other groups of dietary essential fatty acids form cascades that parallel and compete with the arachidonic acid cascade. EPA (20:5 ω-3) provides the most important competing cascade. It is ingested from oily fish or derived from dietary α linolenic acid found in e.g., flax oil. DGLA (20:3 ω-6) provides a third, less prominent cascade. It derives from dietary GLA (18:3 ω-6) found in, e.g. borage oil. These two parallel cascades soften the inflammatory effects of AA and its products. Low dietary intake of these less inflammatory essential fatty acids, especially the ω-3s, is associated with a variety of inflammation-related diseases.

The usual diet in industrial countries contains much less ω-3 fatty acids than the diet even a century ago, and that diet had much less ω-3 than the diet of early hunter-gatherers. This has been accompanied by increased rates of many diseases – the so-called diseases of civilization – that involve inflammatory processes. There is now very strong evidence (National Institute of Health, 2005) that several of these diseases are ameliorated by increasing dietary ω-3, and good evidence for many others. There is also more preliminary evidence showing that dietary ω-3 can ease symptoms in several psychiatric disorders.

Contents

[edit] Eicosanoid series nomenclature

For details on the metabolic pathways for eicosanoids in each series, see the main articles for prostaglandins (PG), thromboxanes (TX), prostacyclins (PGI) and leukotrienes (LK).

Eicosanoids are signalling molecules derived from the EFAs; they are a major pathway by which the EFAs act in the body. There are four classes of eicosanoid and two or three series within each class. Before discussing eicosanoid action, we will expalin the series nomenclature.

Table (1) Three 20-carbon EFAs and the eicosanoid series derived from them
Dietary
Essential Fatty Acid
Abbr Formula
ω carbons:double bonds
Eicosanoid product series
TX
PG
PGI
LT Effects
Gamma-linolenic acid
   via Dihomo gamma linolenic acid
GLA
DGLA
ω-6 18:3
ω-6 20:3
series-1 series-3 less inflamatory
Arachidonic acid AA ω-6 20:4 series-2 series-4 more inflamatory
Eicosapentaenoic acid EPA ω-3 20:5 series-3 series-5 less inflamatory

Cell's outer membranes contain phospholipid fat. Each phospholipid molecule contains two fatty acids. Some of these fatty acids are 20-carbon polyunsaturated essential fatty acids – AA, EPA or DGLA. In response to a variety of inflammatory signals, these EFAs are cleaved out of the phospholipid and released as free fatty acids. Next, the EFA is oxygenated (by either of two pathways), then further modified, yeilding the eicosanoids. (Dorlands, entry at "Prostaglandins")  Cyclooxygenase (COX) oxidation removes two C=C double bonds, leading to the TX, PG and PGI series. Lipoxygenase oxidation removes no C=C double bonds, and leads to the LK.(Cyberlipid Center.)

After oxidation, the eicosanoids are further modified, making a series. Members of a series are differentiated by an ABC... letter, and are numbered by the number of double bonds, which does not change within a series. For example, cyclooxygenase acts upon AA (with 4 double bonds) to generate the series-2 thromboxanes (TXA2, TXB2... ) each with two double bonds.

All the prostenoids are substituted prostanoic acids. Cyberlipid Center's Prostenoid page illustrates the parent compound and the rings associated with each series–letter.

Figure (1) shows these sequences for AA (20:4 ω-6). The sequences for EPA (20:5 ω-3) and DGLA (20:3 ω-6) are analagous.

[edit] Arachidonic acid cascade in inflammation

Figure (1) The Arachidonic acid cascade, showing biosynthesis of AA's eicosanoid products.  EFA and DGLA compete for the same pathways, moderating the actions of AA and its products.
Figure (1) The Arachidonic acid cascade, showing biosynthesis of AA's eicosanoid products. EFA and DGLA compete for the same pathways, moderating the actions of AA and its products.

In the arachidonic acid cascade, dietary linoleic acid (18:3 ω-6) is lengthened and desaturated to form arachidonic acid, esterified into the phospholipid fats in the cell membrane. Next, in response to many inflammatory stimuli, phospholipase is generated and cleaves this fat, releasing AA as a free fatty acid. AA can then be oxygenated and then further modified to form eicosanoidsautocrine and paracrine agents that bind receptors on the cell or its neighbors. Alternatively, AA can diffuse into the cell nucleus and interact with transcription factors to control DNA transcription for cytokines or other hormones.

[edit] Mechanisms of ω-3 eicosanoid action

Figure (2) Essential fatty acid production and metabolism to form Eicosanoids
Figure (2) Essential fatty acid production and metabolism to form Eicosanoids

The eicosanoids from AA generally promote inflammation. Those from GLA (via DGLA) and from EPA are generally less inflamatory, or inactive, or even anti-inflamatory. (This generalization is qualified: an eicosanoid may be pro-inflamatory in one tissue and anti-inflamatory in another. See discussion of PGE2 at (Calder, 2004)) 

Figure (2) shows the ω-3 and -6 synthesis chains, along with the major eicosanoids from AA, EPA and DGLA.

Dietary ω-3 and GLA counter the inflamatory effects of AA's eicosanoids in three ways – displacement, competitive inhibition and direct counteraction.

[edit] Displacement

Dietary ω-3 decreases tissue concentrations of AA. Animal studies show that increased dietary ω-3 results in decreased AA in brain and other tissue. (Medical News Study, 2005) Linolenic acid (18:3 ω-3) contributes to this by displacing linoleic acid (18:2 ω-6) from the elongase and desaturase enzymes that produce AA. EPA inhibits phospholipase A2's release of AA from cell membrane.(Su et al 2003)  Other mechinisms involving the transport of EFAs may also play a role.

The reverse is also true – high dietary lineolate decreases the body's conversion of α-linolenic acid to EPA. However, the effect is not as strong; the desaturase has a higher affinity for α-linolenic acid than it does linoleic acid.(Phinney, 1990)

[edit] Competitive Inhibition

DGLA and EPA compete with AA for access to the cyclooxygenase and lipoxygenase enzymes. So the presence of DGLA and EPA in tissues lowers the output of AA's eicosonoids. For example, dietary GLA increases tissue DGLA and lowers TXB2. (Guivernau, 1994) (Karlstaad, 1993)   Likewise, EPA inhibits the production of series-2 PG and TX. (Calder, 2004) Although DGLA forms no LTs, a DGLA derivative blocks the transformation of AA to LTs.(Belch 2000) 

[edit] Counteraction

Some DGLA and EPA derived eicosonoids counteract their AA derived counterparts. For example, DGLA yields PGE1, which powerfully counteracts PGE2. (Fan, 1998)  EPA yields the antiaggregatory prostacyclin PGI3 (Fischer, 1985) It also yields the leuokotriene LKB5 which vitiates the action of the AA-derived LKB4. (Prescott, 1984)

[edit] The paradox of dietary GLA

Dietary linoleic acid (LA, 18:2 ω-6) is inflammatory. In the body, LA is desaturated to form GLA (18:3 ω-6). But dietary GLA is anti-inflammatory. How is this possible?

Some observations paritally explain this paradox. LA competes with α-linolenic acid, (LNA, 18:3 ω-3) for Δ6-desaturase, and thereby eventually inhibits formation of anti-inflammatory EPA (20:5 ω-3). In contrast, GLA does not complete for Δ6-desaturase. GLA's elongation product DGLA (20:3 ω-6) competes with 20:4 ω-3 for the Δ5-desaturase, and it might be expected that this would make GLA inflammatory, but it is not. Why? Perhaps because this step isn't rate-determining. Δ6-desaturase does appear to be the rate-limiting step; 20:4 ω-3 does not significantly accumulate in bodily lipids.

DGLA inhibits inflammation through both competitive inhibition and direct counteraction (see above.) Dietary GLA leads to sharply increased DGLA in the white blood cells' membranes, where LA does not. This may reflect white blood cells' lack of desaturase.(Fan, Chapkin 1998)

It is likely that some dietary GLA eventually forms AA and contributes to inflammation. Animal studies indicate the effect is small, (Karlstad et al, 1993)  The empirical obseration of GLA's actual effects argues that DGLA's anti-inflammatory effects dominate.(Stone et al, 1979)

[edit] The arachidonic acid cascade in the CNS

Arachidonic Acid Cascade
  In inflammation In the brain
Major effect on Inflammation in tissue Neuronal excitability
AA released from White blood cells Neurons
Triggers for AA release Inflammatory stimuli Neurotransmitters, neurohormones and neuromdulators
Intracellular effects on DNA transcription of cytokines and other mediators of inflammation Activity of ion channels and protein kinases
Metabolized to form Eicosanoids, resolvins, isofurans, isoprostanes, lipoxins, epoxyeicosatrienoic acids (EETs) Eicosanoids, neuroprotectin D, EETs and some endocannabinoids
Table (2) The arachidonic acid cascade act differently between the inflammatory response and the brain.

"The arachidonic acid cascade is arguably the most elaborate signaling system neurobiologists have to deal with." – Piomelli, 2000

The arachidonic acid cascade proceeds somewhat differently in the brain. Neurohormones, neuromodulators or neurotransmitters act as first messengers. They activate phospholipidase to release AA from neuron cell membranes as a free fatty acid. During its short lifespan, free AA may affect the activity of the neuron's ion channels and protein kinases. Or it may be metabolized to form eicosanoids, epoxyeicosatrienoic acids (EETs), neuroprotectin D or various endocannabinoids (anandamide and its analogs.)

The actions of eicosanoids within the brain are not as well characterized as they are in inflammation. It is theorized that they act within the neuron as second messengers controlling presynaptic inhibition and the activation of protein kinase C. They also act as paracrine mediators, acting across synapses to nearby cells. Although detail on the effects of these signals is scant, (Piomelli, 2000) comments

Neurons in the CNS are organized as interconnected groups of functionally related cells (e.g., in sensory systems). A diffusible factor released from a neuron into the interstitial fluid, and able to interact with membrane receptors on adjacent cells, would be ideally used to "synchronize" the activity of an ensemble of interconnected neural cells. Furthermore, during development and in certain forms of learning, postsynaptic cells may secrete regulatory factors which diffuse back to the presynaptic component, determining its survival as an active terminal, the amplitude of its sprouting, and its efficacy in secreting neurotransmitters—a phenomenon known as retrograde regulation. The participation of arachidonic acid metabolites in retrograde signaling and in other forms of local modulation of neuronal activity has been proposed.

The EPA and DGLA cascades are also present in the brain and their eicosanoid metabolites have been detected. The ways in which these differently affect mental and neural processes are not nearly as well characterized as are the effects in inflammation.

[edit] Sources

  • Belch,Jill JF and Alexander Hill (January 2000). Evening primrose oil and borage oil in rheumatologic conditions. Retrieved on February 12, 2006. PubMed cite.
    • "DGLA itself cannot be converted to LTs but can form a 15-hydroxyl derivative that blocks the transformation of arachidonic acid to LTs. Increasing DGLA intake may allow DGLA to act as a competitive inhibitor of 2-series PGs and 4-series LTs and thus suppress inflammation."
  • Fan, Yang-Yi and Robert S. Chapkin (9 September 1998). Importance of Dietary gamma -Linolenic Acid in Human Health and Nutrition. Retrieved on February 3, 2006.
    • "[D]ietary GLA increases the content of its elongase product, dihomo-gamma linolenic acid (DGLA), within cell membranes without concomitant changes in arachidonic acid (AA). Subsequently, upon stimulation, DGLA can be converted by inflammatory cells to 15-(S)-hydroxy-8,11,13-eicosatrienoic acid and prostaglandin E1. This is noteworthy because these compounds possess both anti-inflammatory and antiproliferative properties."
  • Piomelli, Daniele (2000). Arachidonic Acid. Neuropsychopharmacology: The Fifth Generation of Progress. Retrieved on 2006-03-03.