Cubic zirconia
From Wikipedia, the free encyclopedia
Cubic zirconia (or CZ) is zirconium oxide (ZrO2), a mineral that is extremely rare in nature but is widely synthesized for use as a diamond simulant. The synthesized material is hard, optically flawless and usually colorless, but may be made in a variety of different colors. It should not be confused with zircon, which is a zirconium silicate (ZrSiO4).
Because of its low cost, durability, and close visual likeness to diamond, synthetic cubic zirconia has remained the most gemologically and economically important diamond simulant since 1976. Its main competition as a synthetic gemstone is the more recently cultivated material synthetic moissanite.
Contents |
[edit] Technical aspects
Cubic zirconia isn't real diamond, its flippin fake DUH, as its name would imply, crystallographically isometric, and as diamond is also isometric, this is an important attribute of a would-be diamond simulant. Synthesized material contains a certain mole percentage (10-15%) of metal oxide stabilizer. During synthesis zirconium oxide would otherwise form monoclinic crystals, its stable form under normal atmospheric conditions. The stabilizer is required for cubic crystal formation; it may be typically either yttrium or calcium oxide, the amount and stabilizer used depending on the many recipes of individual manufacturers. Therefore the physical and optical properties of synthesized CZ vary, all values being ranges.
It is a dense substance, with a specific gravity between 5.6 - 6.0. Cubic zirconia is relatively hard, at about 8.5 on the Mohs scale - nowhere near diamond, but much harder than most natural gems. Its refractive index is high at 2.15 - 2.18 (B-G interval) and its luster is subadamantine. Its dispersion is very high at 0.058 - 0.066, exceeding that of diamond (0.044). Cubic zirconia has no cleavage and exhibits a conchoidal fracture. It is considered brittle.
Under shortwave UV cubic zirconia typically luminesces a yellow, greenish yellow or "beige." Under longwave UV the effect is greatly diminished, with sometimes a whitish glow being seen. Colored stones may show a strong, complex rare earth absorption spectrum.
[edit] History
Since 1892 the yellowish, monoclinic mineral baddeleyite had been the only natural form of zirconium oxide known. Being of rare occurrence it had little economic importance.
The extremely high melting point of zirconia (2750°C) posed a hurdle to controlled single-crystal growth, as no existing crucible could hold it in its molten state. However, stabilization of zirconium oxide had been realized early on, with the synthetic product stabilized zirconia introduced in 1930. Although cubic, it was in the form of a polycrystalline ceramic: it was made use of as a refractory material, highly resistant to chemical and thermal (up to 2540°C) attack.
Seven years later, German mineralogists M. V. Stackelberg and K. Chudoba discovered naturally occurring cubic zirconia in the form of microscopic grains included in metamict zircon. Thought to be a byproduct of the metamictization process, the two scientists did not think the mineral important enough to formally name. The discovery was confirmed through x-ray diffraction, proving a natural counterpart to the synthetic product exists.
As with the majority of grown diamond look-alikes, the conceptual birth of single-crystal cubic zirconia began in the minds of scientists seeking a new and versatile material for use in lasers and other optical applications. Its evolution would eclipse earlier synthetics, such as synthetic strontium titanate, synthetic rutile, YAG (Yttrium Aluminium Garnet) and GGG (Gadolinium Gallium Garnet).
Some of the earliest research into controlled single-crystal growth of cubic zirconia occurred in 1960s France, much work being done by Y. Roulin and R. Collongues. This technique involved molten zirconia being contained within a thin shell of still-solid zirconia, with crystal growth from the melt: The process was named cold crucible, an allusion to the system of water cooling used. Though promising, these pursuits yielded only small crystals.
Later, Soviet scientists under V. V. Osiko at the Lebedev Physical Institute in Moscow perfected the technique, which was then named skull crucible (an allusion either to the shape of the water-cooled container or to the occasional form of crystals grown). They named the jewel Fianit, but the name was not used outside of the USSR. Their breakthrough was published in 1973, and commercial production began in 1976. By 1980 annual global production had reached 50 million carats (10,000 kg).
[edit] Synthesis
The Soviet-perfected school crucible is still used today, with little variation. Water-filled copper pipes provide a cup-shaped scaffold in which the zirconia feed powder is packed, the whole contraption being wrapped with radio frequency induction coils running perpendicular to the copper pipes. A stabilizer is mixed with the feed powder, being typically either yttria or calcium oxide.
The RF induction coils function in a manner similar to the primary winding in a transformer. The heated zirconia acts as the "secondary winding" of a transformer which in effect is "shorted" out and thus gets incredibly hot. This heating method requires the introduction of small pieces of zirconium metal. The metal is placed near the outside of the charge and is melted by the RF coils and heats the surrounding zirconia powder from the outside inwards. The cooling water-filled pipes embracing the outer surface maintain a thin "skin" (1-2 mm) of unmelted feed, creating a self-contained apparatus. After several hours the heat is reduced in a controlled and gradual manner, resulting in the formation of flawless columnar crystals. Prolonged annealing at 1400°C is then carried out to remove any strain. The annealed crystals, which are typically 5 cm long by 2.5 cm wide (although they may be grown much larger), are then cut into gemstones.
The addition of certain metal oxide dopants into the feed powder results in a variety of vibrant colors. For example:
[edit] Innovations
In recent years manufacturers have sought ways of distinguishing their product by supposedly "improving" cubic zirconia. Coating finished CZs in a film of diamond-like carbon (DLC) or Amorphous Diamond is one such innovation, a process using chemical vapor deposition. The resulting material is purportedly harder, more lustrous and more like diamond overall: The coating is thought to quench the excess fire of CZ, while improving its refractive index, thus bringing it more in line with diamond. Additionally, because of the high percentage of diamond bonds in the amorphous diamond coating, the finished simulant will show a positive diamond signature under Raman spectroscopy.
Another technique first applied to quartz and topaz has also been adapted to cubic zirconia: Vacuum-sputtering an extremely thin layer of metal oxide (typically gold) onto the finished stones creates an iridescent effect. This material is marketed as "mystic" by many dealers. Unlike DLC, the surreal effect is not permanent, as abrasion easily removes the oxide layer.
[edit] CZ versus diamond
Cubic zirconia is so optically close to diamond that only a trained eye can easily differentiate the two. There are a few key features of CZ which distinguish it from diamond, some observable only under the microscope or loupe. For example:
- Dispersion. With a dispersive power greater than diamond (0.060 vs. 0.044) the more prismatic fire of CZ can be seen by even an untrained eye.
- Hardness. CZ has an 8.5 to 9.0 on the Mohs' hardness scale vs. a rating of 10 for diamonds.
- Specific gravity. CZs are heavyweights in comparison to diamonds; a CZ will weigh about 1.7 times more than a diamond of equivalent size. Obviously, this difference is only useful when examining loose stones.
- Flaws. Contemporary production of cubic zirconia is virtually flawless, whereas most diamonds have some sort of defect, be it a feather, included crystal, or perhaps a remnant of an original crystal face (e.g. trigons).
- Refractive index. CZ has a refractive index of 2.176, compared to a diamond's 2.417.
- Cut. Under close inspection with a loupe, the facet shapes of some CZs appear different from diamonds.
- Color. More precisely, the lack of color: Only the rarest of diamonds are truly colorless, most having a tinge of yellow or brown to some extent. By comparison, CZ can be made in most cases entirely colorless: equivalent to a perfect "D" on diamond's color grading scale.
- Thermal conductivity. CZs are thermal insulators whilst diamonds are among the most efficient thermal conductors, exceeding copper. This makes telling the difference between diamond and CZ quite easy for those with the right instruments.
[edit] See also
[edit] Further reading
- Nassau, Kurt (1980). Gems Made by Man. ISBN 0-8019-6773-2.