Cover (topology)

From Wikipedia, the free encyclopedia

In mathematics, a cover of a set X is a collection C, of subsets of X whose union is X. In symbols, if C = {Uα : α ∈ A} is an indexed family of subsets U, of X, then C is a cover if

\bigcup_{\alpha \in A}U_{\alpha} = X

More generally, if Y is a subset of X, and C is a collection of subsets Uα of X, whose union contains Y, then C is said to be a cover of Y. i.e. C is a cover of Y if

\bigcup_{\alpha \in A}U_{\alpha} \supseteq  Y

Covers are commonly used in the context of topology. If the set X is a topological space, we say that C is an open cover if each of its members are open sets (i.e. each Uα is contained in T, where T is the topology on X).

If C is a cover of X then a subcover of C is a subset of C which still covers X.

A refinement of a cover C of X is a new cover D of X such that every set in D is contained in some set in C. In symbols, the cover D = {Vβ : β ∈ B} is a refinement of the cover C = {Uα : α ∈ A} if for every Vβ there exists some Uα such that VβUα.

Every subcover is also a refinement, but not vice-versa. Note however that a refinement will, in general, have more sets than the original cover.

An open cover of X is said to be locally finite if every point of X has a neighborhood which intersects only finitely many sets in the cover. In symbols, C = {Uα} is locally finite if for any xX, there exists some neighborhood N(x) of x such that the set

\left\{ \alpha \in A : U_{\alpha} \cap N(x) \neq \varnothing \right\}

is finite.

[edit] Compactness

The language of covers is often used to define several topological properties related to compactness. A topological space X is said to be

  • compact if every open cover has a finite subcover.
  • Lindelöf if every open cover has a countable subcover.
  • metacompact if every open cover has a point finite open refinement.
  • paracompact if every open cover admits a locally finite, open refinement.

For some more variations see the above articles.

[edit] See also