Covariance matrix
From Wikipedia, the free encyclopedia
In statistics and probability theory, the covariance matrix is a matrix of covariances between elements of a vector. It is the natural generalization to higher dimensions of the concept of the variance of a scalar-valued random variable.
Contents |
[edit] Definition
If X is a column vector with n scalar random variable components, and μk is the expected value of the kth element of X, i.e., μk = E(Xk), then the covariance matrix is defined as:
The (i,j) element is the covariance between Xi and Xj.
This concept generalizes to higher dimensions the concept of variance of a scalar-valued random variable X, defined as
where μ = E(X).
[edit] Conflicting nomenclatures and notations
Nomenclatures differ. Some statisticians, following the probabilist William Feller, call this matrix the variance of the random vector X, because it is the natural generalization to higher dimensions of the 1-dimensional variance. Others call it the covariance matrix, because it is the matrix of covariances between the scalar components of the vector X. Thus
However, the notation for the "cross-covariance" between two vectors is standard:
The var notation is found in William Feller's two-volume book An Introduction to Probability Theory and Its Applications, but both forms are quite standard and there is no ambiguity between them.
[edit] Properties
For and the following basic properties apply:
- is positive semi-definite
- If p = q, then
- If and are independent, then
where and are a random vectors, is a random vector, is vector, and are matrices.
This covariance matrix (though very simple) is a very useful tool in many very different areas. From it a transformation matrix can be derived that allows one to completely decorrelate the data or, from a different point of view, to find an optimal basis for representing the data in a compact way (see Rayleigh quotient for a formal proof and additional properties of covariance matrices). This is called principal components analysis (PCA) in statistics and Karhunen-Loève transform (KL-transform) in image processing.
[edit] Which matrices are covariance matrices
From the identity
and the fact that the variance of any real-valued random variable is nonnegative, it follows immediately that only a nonnegative-definite matrix can be a covariance matrix. The converse question is whether every nonnegative-definite symmetric matrix is a covariance matrix. The answer is "yes". To see this, suppose M is a p×p nonnegative-definite symmetric matrix. From the finite-dimensional case of the spectral theorem, it follows that M has a nonnegative symmetric square root, which let us call M1/2. Let be any p×1 column vector-valued random variable whose covariance matrix is the p×p identity matrix. Then
[edit] Complex random vectors
The variance of a complex scalar-valued random variable with expected value μ is conventionally defined using complex conjugation:
where the complex conjugate of a complex number z is denoted z * .
If Z is a column-vector of complex-valued random variables, then we take the conjugate transpose by both transposing and conjugating, getting a square matrix:
where Z * denotes the conjugate transpose, which is applicable to the scalar case since the transpose of a scalar is still a scalar.
[edit] Estimation
The derivation of the maximum-likelihood estimator of the covariance matrix of a multivariate normal distribution is perhaps surprisingly subtle. It involves the spectral theorem and the reason why it can be better to view a scalar as the trace of a 1 × 1 matrix than as a mere scalar. See estimation of covariance matrices.
[edit] External link
- Covariance Matrix at Mathworld