Context-sensitive language

From Wikipedia, the free encyclopedia

A context-sensitive language is a formal language that can be defined by a context-sensitive grammar. That is one of the four types of grammars in the Chomsky hierarchy. Of the four, this is the least often used, in both theory and practice.

Contents

[edit] Computational properties

Computationally the context-sensitive languages are equivalent with linear bounded non-deterministic Turing machines. That is a non-deterministic Turing machine with a tape of only kn cells, where n is the size of the input and k is a constant associated with the machine. This means that every formal language that can be decided by such a machine is a context-sensitive language, and every context-sensitive language can be decided by such a machine.

This set of languages is also known as NLIN-SPACE, because they can be accepted using linear space on a non-deterministic Turing machine. The class LIN-SPACE is defined the same, except using a deterministic Turing machine. Clearly LIN-SPACE is a subset of NLIN-SPACE, but it is not known whether LIN-SPACE=NLIN-SPACE. It is widely suspected they are not equal.

[edit] Examples

An example of a context-sensitive language that is not context-free is L = { ap : p is a prime number }. The easiest way to show this is using a linear bounded Turing machine.

[edit] Properties of context-sensitive languages

  • The union, intersection, and concatenation of two context-sensitive languages is context-sensitive.
  • The complement of a context-sensitive language is itself context-sensitive.
  • Every context-free language is context-sensitive.

[edit] See also

Automata theory: formal languages and formal grammars
Chomsky
hierarchy
Grammars Languages Minimal
automaton
Type-0 Unrestricted Recursively enumerable Turing machine
n/a (no common name) Recursive Decider
Type-1 Context-sensitive Context-sensitive Linear-bounded
n/a Indexed Indexed Nested stack
Type-2 Context-free Context-free Nondeterministic Pushdown
n/a Deterministic Context-free Deterministic Context-free Deterministic Pushdown
Type-3 Regular Regular Finite
Each category of languages or grammars is a proper subset of the category directly above it.