Canadian Light Source Synchrotron

From Wikipedia, the free encyclopedia

Canadian Light Source, Inc.
Type Not for profit
Founded 1999
Headquarters 101 Perimeter Road, Saskatoon, SK, Canada
Key people Bill Thomlinson - Executive Director
Industry Science and Technology
Products Research
Employees 130 (2006)
Website www.lightsource.ca

The Canadian Light Source (CLS) is a third generation 2.9 giga electron volt synchrotron located in Saskatoon, Saskatchewan, Canada. It opened on October 22, 2004 after three years of construction and cost C$173.5 million. One of only 17 such facilities in the world, it occupies a footprint the size of a football field on the grounds of the University of Saskatchewan. The CLS is operated by CLS Inc. a not-for-profit corporation owned by the University of Saskatchewan.

Contents

[edit] Overview

The CLS is one of the largest science project in Canadian history, and represents an unprecedented level of cooperation between the Government of Canada, the governments of Saskatchewan, Ontario and Alberta, the City of Saskatoon, universities across Canada and industry.

A synchrotron produces extremely bright light by using radio frequency waves to accelerate electrons to nearly the speed of light and then bending the path of the electron stream into a circle using powerful electromagnets. As they travel in their circular path, the electrons shed energy as photons across the electromagnetic spectrum including infrared, ultraviolet and X-rays. The light is shone down beamlines to endstations (small laboratories) where scientists can select different parts of the spectrum to “see” the microscopic nature of matter, right down to the level of the atom.

Synchrotrons like the CLS can be used to probe the structure of matter and analyze a host of physical, chemical, geological and biological processes. Information obtained by scientists can be used to help design new drugs, examine the structure of surfaces in order to develop more effective motor oils, biomedical imaging of tumours and other biological tissues, build more powerful computer chips, develop new materials for safer medical implants, and help with clean-up of mining wastes, to name just a few applications.

[edit] History

[edit] Before The CLS

The first accelerator research programs at the University of Saskatchewan was established in 1948, when Canada's first betatron (a 25 MeV machine) was constructed in the Physics Building. Based on this early success in 1951 the world's first non-commercial cobalt-60 therapy unit for the treatment of cancer was constructed on campus and then in 1961 construction of the Saskatchewan Accelerator Laboratory (SAL) started and was completed in 1964. In 1999 SAL operations were discontiuned and the accelerator used as an injector for the CLS. In addition to the CLS the University continues to operate a small Tokamak as part of the Plasma Physics Laboratory.

Prior to the CLS, Canada (through the University of Western Ontario) operated several beamlines at the Synchrotron Radiation Center (SRC), at the University of Wisconsin-Madison, in Stoughton, Wisconsin.

[edit] The CLS Project

On March 31 1999 The Canada Foundation for Innovation provided partial funding for the construction of the CLS facility. The remaining matching funds from Saskatchewan, Ontario, Alberta, Saskatoon and industry would follow between 1999 and 2001. On September 21 1999 The CLS project was officially launched. On February 21 2001 the CLS building expansion was completed.

The Linac was refurbished and placed back into service on September 13 2001 while the Booster Ring (BR1) and Storage Ring (SR1) were still under construction. First turn was achieved in the BR1 ring in July 2002 with BR1 fully commissioned by September 2002. First turn in the SR1 ring was achieved on September 2003, with first light in December. In April of 2004 SR1 achieved 100 mA.

In 2002 the CLS Project was awarded the National Award for Exceptional Engineering Achievement by the Canadian Council of Professional Engineers.

The CLS Project was officially completed June 30, 2005.

[edit] Operation

On July 15 2004 CLS received regulatory approval from the CNSC for normal operation. The grand opening occurred in October 2004. On May 19 2005 Her Majesty Queen Elizabeth II (Queen of Canada) and His Royal Highness The Duke of Edinburgh visited the CLS. A few days later on May 27 the first experiment by an outside user was conducted.

[edit] Phase II Beamlines

On March 8 2004 CLS received partial funding ($18M) from the Canadian Foundation for Innovation for the phase II beamline expansion project.[1] The phase II beamlines include:

  • Biomedical Imaging and Therapy (BMIT), $17M;
  • Soft X-Ray Beamline for Microcharacterization of Materials, $4M;
  • Very Sensitive Elemental and Structural Probe Employing Radiation from a Synchrotron (VESPERS), $4.5M;
  • Resonant Elastic and Inelastic Soft X-Ray Scattering, $8.3M; and
  • High-Throughput Macromolecular Crystallography, $10.4M.
  • Synchrotron Laboratory for Micro and Nano Devices (SyLMAND)

[edit] Accelerators

[edit] Linac

Originally part of the SAL facility, the linear accelerator was refurbished and modified in 1999-2000 to become the injector for the CLS. Originally intended to operate at 180 Hz, the linac was modified for 1 Hz operation. The linac is followed by an Energy Compression System and then a 70 m transfer line (LTB1) that delivers the beam to the booster ring (BR1).

[edit] Booster Ring (BR1)

Beam is delivered to the booster at 200-250 MeV where it is accelerated to a final energy of 2.9 GeV. The Booster ring was manufactured by Danfysik with final installation and assembly done at the CLSI. The booster ring uses an RF frequency of 500 Mhz. The beam is extracted from the booster and transferred through the BTS line and into the SR1 ring.

[edit] Storage Ring (SR1)

The SR1 ring was designed and assembled by CLSI. The storage ring uses a 12-fold periodic layout of cells consisting of dipole, quadrupole and sextupole magnets to create a stable operating region for the beam. For high quality light sources, insertion devices (wigglers or undulators) are placed in the straight sections between the magnets. To accommodate a large number of users at the same time, nine straight sections are available for insertion devices. The synchrotron light from any of the dipole magnets in the lattice is also available to users.

Initially, the stored current will be only 200 mA due to the RF power constraints. Based on the anticipated lifetime of the stored beam, the storage ring will be re-filled at intervals of 4 to 12 hours.

[edit] SR1 Beamlines

ID Name Port Phase Energy (keV) Usage
BMIT-BM Biomedical Imaging and Therapy 6B 2 8–40 Biomedical Imaging and Therapy
BMIT-ID Biomedical Imaging and Therapy 6ID1 2 20–100 Provides advanced imaging for medicine and high-precision radiation therapies for cancer.
CMCF Canadian Macromolecular Crystallography Facility 8ID.1 1 6.5–18 Protein crystallography beamline suitable for studying small crystals and crystals with large unit cells.
CMCF2 Canadian Macromolecular Crystallography Facility 2 5–20 Atomic-scale imaging of molecules such as viral and bacterial proteins used for drug design.
Far IR High Resolution Far Infrared Spectroscopy 2B1.1 1 Spectroscopic study of molecules
HXMA Hard X-ray micro-Analysis 6ID.1 1 5–40 X-ray Absorption Fine Structure (XAFS), microprobe, diffraction and imaging
Mid IR Mid IR Spectromicroscopy 1B1.1 1 0.74–0.09 Fourier Transform IR spectrometer
OSR Optical Syncrotron Radiation 2B1.2 1 Accelerator diagnostic beamline. Internal CLS use.
REIXS Resonant Elastic and Inelastic X-ray Scattering 10ID.2 2 0.08–2.0 Atomic-scale microscopy with applications in environmental science and advanced materials.
SGM High Resolution Spherical Grating Monochromator 11ID.1 1 0.25–2.0 X-ray Absorption Spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), X-ray Excited Optical Luminescence (XEOL), Photoemission Electron Microscope (PEEM) and Gas phase photoionization and TOF measurements
SM Soft X-ray Spectromicroscopy 10ID.1 1 1–20 Polymer science and biological applications, novel material design and magnetic imaging
SXRMB Soft X-ray Microcharacterization Beamline 2 1.7–10 Determine materials structures to nanometre scales with applications in environment, electronics, and medicine.
SyLMAND Synchrotron Laboratory for Micro And Nano Devices 2 1–15 Research in and fabrication of polymer microstructures
VESPERS Very Sensitive Elemental and Structural Probe Employing Radiation from a Synchrotron 2 6–30 Determine trace elements and crystal structure in microsamples with applications to mineral ores and metals.
VLS-PGM Variable Line Spacing Plane Grating Monochromator 11ID.2 1 0.055–0.25 X-ray Absorption Spectroscopy (XAS), X-ray Excited Optical Luminescence (XEOL) and Photoemission Electron Microscopy (PEEM)
XSR X-Ray Syncrotron Radiation 2B2 1 Accelerator diagnostic beamline. Internal CLS use.

[edit] Executive Director

  • Dennis Skopik - Acting Director (May 1999 - Sept. 1999)[2]
  • Michael Bancroft - Interim Director (Sept. 1999 - Oct. 2001) [3]
  • Mark de Jong - Acting Director (Oct. 2001 - Nov. 2002) [4]
  • Bill Thomlinson - Executive Director (Nov. 2002-)

[edit] See also

[edit] External links

Coordinates: 52°08′12.5″N, 106°37′52.5″W

In other languages