Brunn-Minkowski theorem
From Wikipedia, the free encyclopedia
In mathematics, the Brunn-Minowski theorem (or Brunn-Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn-Minkowski theorem (H. Brunn 1887; H. Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to L.A. Lyusternik (1935).
[edit] Statement of the theorem
Let n ≥ 1 and let μ denote Lebesgue measure on Rn. Let A and B be two compact subsets of Rn. Then the following inequality holds:
where A + B denotes the Minkowski sum:
[edit] Remarks
The proof of the Brunn-Minkowski theorem establishes that the function
is concave. Thus, for every pair of compact subsets A and B of Rn and every 0 ≤ t ≤ 1,
One can even show that the function is strictly concave. This implies that the inequality in the theorem is strict unless A and B are homothetic, i.e. are equal up to translation and dilation.
[edit] References
- Brunn, H. (1887). "Über Ovale und Eiflächen". Inaugural Dissertation, München.
- Dacorogna, Bernard (2004). Introduction to the Calculus of Variations. London: Imperial College Press. ISBN 1-86094-508-2.
- Lyusternik, Lazar A. (1935). "Die Brunn-Minkowskische Ungleichnung für beliebige messbare Mengen". Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS (Nouvelle Série) III: 55–58.
- Minkowski, Hermann (1896). Geometrie der Zahlen. Leipzig: Teubner.