Brahmagupta theorem

From Wikipedia, the free encyclopedia

Brahmagupta's theorem states that AF = FD.
Brahmagupta's theorem states that AF = FD.

Brahmagupta's theorem is a result in geometry. It states that if a cyclic quadrilateral has perpendicular diagonals, then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. It is named after the Indian mathematician Brahmagupta.

More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E. Let F be the intersection of the line EM and the edge AD. Then, the theorem states that F is in the middle of AD.

[edit] External link

In other languages