Talk:Bismuth

From Wikipedia, the free encyclopedia

Wikiproject on Elements
This article is supported by the Elements WikiProject, which gives a central approach to the chemical elements on Wikipedia. Please participate by editing this article, or visit the project page for more details.
This article has also been selected for the Version 0.5 release of Wikipedia.
Start This article has been rated as Start-Class on the quality scale.
High This article has been rated as High-importance on the importance scale.

Article Grading: The article has been rated for quality and/or importance but has no comments yet. If appropriate, please review the article and then leave comments here to identify the strengths and weaknesses of the article and what work it will need.

Article changed over to new Wikipedia:WikiProject Elements format by maveric149. Elementbox converted 12:25, 10 July 2005 by Femto (previous revision was that of 21:13, 4 July 2005).

Contents

[edit] Information Sources

Some of the text in this entry was rewritten from Los Alamos National Laboratory - Bismuth. Additional text was taken directly from USGS Bismuth Statistics and Information, from the Elements database 20001107 (via dict.org), Webster's Revised Unabridged Dictionary (1913) (via dict.org) and WordNet (r) 1.7 (via dict.org). Data for the table was obtained from the sources listed on the main page and Wikipedia:WikiProject Elements but was reformatted and converted into SI units.


[edit] Talk

Bismuth is a diamagnetic, it can be use to block Magnet fields. It can be used to make Power (Voltage, current).Take a magnet, Bismuth, and coil of wire. Put the Bismuth between the magnet and coil of wire. By taking a Magnet blocking the field with Bismuth and removing the Bismuth. Now move the Bismuth in and out of the center(Between the Magnet and Coil of wire). Troy Frei

Do it yourself and get back to us. It takes work to remove a diamagnetic meterial from a magnetic field, just as it does to remove a dielectric from the electric field in a capacitor. SBHarris 02:34, 9 February 2007 (UTC)

One quick question I can't seem to find in the article. Does the dimagnatism of Bismush continue in hihg temperatres? Does it get stronger or weaker in say, bismuth vapor? Thanks, all the infromation I can find about this is inverably about superconductors. 24.137.78.34 11:18, 25 May 2006 (UTC)


On the subject of etymology, the sentence

German Weisse Masse meaning "white mass"; later Wisuth and Bisemutum

seems (to me) to contain several errors. I have more faith in Merriam-Webster.
Herbee 21:47, 2004 Apr 26 (UTC)

Nuclear systematics - Does the theoretical mass defect come in higher or lower than that which is empirically measured? I can provide the empirical value from Ehmann/Vance or NuDat, and it is -18.2585 MeV. Inquiring minds wish to know.. :-)

--24.80.110.173 06:35, 7 August 2005 (UTC)

[edit] = imortal being

imho that is to stupid to include

I added that section to metaphorically emphasize the stability of bismuth. I don't regard it as "stupid". Pakaran (ark a pan) 16:29, 19 Dec 2004 (UTC)

[edit] Poor metal vs. semi-metal?

Every reference I've read on bismuth refers to it as a semimetal (metalloid), not a "poor metal". In fact, I've never really heard of an scientific use of "poor metal" other than a casual term meaning it's a poor conductor, or not an effective engineering material.

Eric 22:06, 29 Jan 2005 (UTC)

[edit] Disputed

The statement that bismuth is the heaviest of the heavy metals and the only non-toxic comes from [1], however I think it is misleading. For "heaviest", it certainly isn't w.r.t density, but might be w.r.t atomic number for certain definitions of heavy metal (if uranium and thorium are not classified as heavy metals). For "the only non-toxic", it is mentioned that gold is not very toxic either (e.g. in heavy metal and gold).

[edit] Re: Disputed

When it says "Among the heavy metals, it is the heaviest and the only non-toxic". I think it means the "heaviest AND ALSO non-toxic" of metals.

Gold is heavy but has an atomic number of 79 and Bismuth has an atomic number of 83, which means (again...) that bismuth is the heaviest of non-toxic metals.

[edit] Stability related to shell model?

Is Bismuth's surprising radioactive stability related to it having 126 neutron, a magic number in the shell model theory of nuclei? My high school text agrees, but someone more knowledgable than the shoddy quality of my text should probably express this more coherently. -- postglock 09:37, 11 September 2005 (UTC)

One way to show this is true is to look at the A = 83 isobaric chain and note that Bi-209 is the only one stable against beta decay, but yes, it can be argued on nuclear-systematics grounds that the N = 126 closed shell is what gives Bismuth its stability. However, Polonium-209 is the most stable isotope of that element, and it has 84 protons and 125 neutrons. Polonium-210's half-life is cut down by two orders of magnitude (when calculated by the Geiger-Nuttall rule) because of the fact that Lead-206 is doubly-magic and in the theory of alpha decay it is easier to form the alpha particle when the nucleons to form it are already spin-paired.

[edit] Re: Re: Disputed

OK. Gold IS a toxic heavy metal. The only problem is it is hard to find and make compounds of gold that can be assimilated by the body.

The word 'heavy' in this context usually refers to the atomic number, not the density of the element. Elements like Seaborgium are referred to a 'Superheavy' It might be more meaningful to use the term 'heaviest nucleii', although polonium might be considered here as a metal which is heavier, but it it not stable so the radioactivity might kill someone before heavy metal poisoning does.

Tungsten is a heavy metal, but is also not toxic (at least not much). I don't know about the others. Most of the others are kind of rare so although they are heavy metal poisons it would be hard to encounter toxic compounds.

[edit] Nontoxic

I think what the "nontoxic" statement means to achieve is remove your intuition, in comparison to similar metals, similar applications, especially lead, which is very poisonous, and it's right next to bismuth in the periodic table. In my mind, bismuth belongs in the group of lead, antimony, selenium, tin, arsenic, mercury, etc. type of element group, in decreasing order of "similarity." Of these and most other metals, bismuth shines in the sense that pepto-bismol is a straight bismuth compound you can ingest without any fear. It's hard to think of many other non-biologically significant metal compounds that are similarly nontoxic, yet reactive with stomach acid. Sillybilly 20:00, 30 October 2005 (UTC)

  • Actually, bismuth can be toxic if heavily overdosed, and it's only 'relatively' nontoxic to humans, but it can be very toxic to prokaryotes, such as Helicobacter pylori bacteria that cause stomach ulcers. This is the main function of bismuth subsalicylate, the active ingredient in Pepto-Bismol, and not the stomach acid reactivity that bismuth subcarbonate similar to calcium carbonate pills would have. Sillybilly 02:45, 23 November 2005 (UTC)

How 'non-toxic' do you mean? Anything in excess cause trouble, including water and salt (sodium chloride). If bismuth is 'non-toxic', then it is more in the league with calcium, magnesium, potassium, and sodium ions (although sodium, potassium, or calcium metals would be extremely dangerous due to the corrosiveness of the metal hydroxides, and any significant imbalance of potassium and magnesium in the blood would be lethal).

What water-soluble or acid-soluble metallic ions (including those of weak metals), are non-toxic? I'm not referring to substances rendered inert due to insolubility (for example, barium sulfate). --66.231.41.57 04:34, 5 December 2005 (UTC)


Most of the discussion here is about semantics, due to the very poor phraseology of the original text. Without changing the intended meaning, I have rephrased the "hevaiest" and "non-toxic" clauses so that they should now be non-controversial. 150.203.69.27 06:07, 12 December 2005 (UTC) Dr. A. G. Christy, Dept. Earth & Marine Sciences, Australian National University

[edit] Dead link

I removed this dead link [2]. Glad I read it particularly about Pepto-Bismal.--Dakota ~ ° 00:43, 28 February 2006 (UTC)

[edit] Thermal Resistance

Not sure I fully understand what they're trying to say with the statement "only mercury has less thermal conductivity." Probably they mean of the heavy metals, but using Gold as per another example, it has a much lower thermal conductivity. —The preceding unsigned comment was added by Etmax (talk • contribs) 22:31, June 5, 2006.

I'm not sure what you mean. Bismuth has a thermal conductivity of about 8 W/mK, while gold has a thermal conductivity of over 300 W/mK. Gold conducts heat much better than bismuth. eaolson 04:02, 6 June 2006 (UTC)
Um, the first entry here has my adress number thing stuck on the end of it, but i didn't write it. What's the matter? 24.137.78.34 20:22, 8 June 2006 (UTC)
Apologies, I looked at the wrong history entry when I added the unsigned template. Now fixed. eaolson 20:32, 8 June 2006 (UTC)
Not a problem 24.137.78.34 00:45, 11 June 2006 (UTC)

[edit] Theoretical vs. experimental (in)stabilty

In russian (USSR) "Popular library of chemical elements" (1977) stated, that bismuth (isotope 209Bi) _is_ decaying with half-period of 2*10^18 years. Please remove that crap about 2003 and France.

Evidence (all in russian):

(1983 edition djvu hard copy) <http://www.rushim.ru/books/obzor/popular-biblioteka2.djvu>

(HTML version of 1977 edition) <http://n-t.org/ri/ps/pb083.htm>

[edit] eat it

I want to eat Image:Bismuth_crystal_macro.jpg. What does it tast like? -lysdexia 06:45, 14 October 2006 (UTC)

[edit] Precaution creep

Hi. After some reflection I changed back your most recent edit to the above, as I thought the previous version read better (listing the protective equipment in more detail). I note your qualifications from your talk page and your experience as a Wikipedian, and don't want to appear high-handed in reverting the edit. If you disagree with my reverson, I am happy to discuss. Jeendan 03:02, 1 February 2007 (UTC)

I should have put more of my thinking on the TALK page, so here it is. As it is, this bit of article, which was supposed to be on crystals, was getting to be a collection of warnings and user instructions for amateurs. This is sort of unencyclopedic, since it's not our job to tell people about dangers of home hobbies, or give instructions on do it yourself dangerous stuff. We've had problems putting that stuff even in the "precautions" sections of element articles (which some people have argued shouldn't even BE there at ALL). Nevertheless, the precaution section has survived for particularly trecherous elements like sodium, sort of as a public service. But I'd hate to see "precaution creep" in this fashion, all over wikis, intended for people who are bound and determined to screw up with some material--- and that's what I thought I was detecting here. See if you don't agree. SBHarris 03:17, 1 February 2007 (UTC)
A new wording proposed. Feel free to change it if you think it does not do the trick. Jeendan 05:57, 1 February 2007 (UTC)

[edit] Hello...?

Will someone post the number of protons, electrons, and neutrons of bismuth? And also the mass number? -- —The preceding unsigned comment was added by 74.140.218.179 (talkcontribs)..

Well, from the article, the atomic number of bismuth is 83, so it has 83 protons. The most common isotope is bismuth-209, so it has 209 - 83 = 126 neutrons. And the mass number is the same as the atomic mass, so that would be 208.98 g / mole. -- MarcoTolo 01:52, 7 March 2007 (UTC)
Oh...Thanks. I just didn't understand the method, I think...Sorry. —The preceding unsigned comment was added by 74.140.218.179 (talk) 02:03, 7 March 2007 (UTC).
No need to be sorry - glad I could help. In the future you might have better luck posting questions like this at the Wikipedia Reference desk. -- MarcoTolo 02:19, 7 March 2007 (UTC)
OK. I just thought it didn't belong there. Thanks again. —The preceding unsigned comment was added by 74.140.218.179 (talk) 02:40, 7 March 2007 (UTC).

[edit] Suggested re-rating

I suggest that this article be re-rated to B-class, given its depth and style. --Deryck C. 04:30, 22 March 2007 (UTC)

Based on the project guidelines for Start-class articles ("The article has a good amount of content, but it is still weak in certain areas, and may lack a table. For example it may cover the uses and physical properties extensively, but be weak on actual chemistry."), I'm guessing the article is not quite a B-class yet.... -- MarcoTolo 05:25, 22 March 2007 (UTC)