Bionics
From Wikipedia, the free encyclopedia
Bionics (also known as biomimetics, biognosis, biomimicry, or bionical creativity engineering) is the application of methods and systems found in nature to the study and design of engineering systems and modern technology. The word 'bionic' is formed from the Greek word "βίον", pronounced "bion", meaning "unit of life") and the suffix -ic, meaning "like" or "in the manner of", hence "like life". (The derivation given in some dictionaries as "biology" + "electronics" is incorrect.)
The transfer of technology between lifeforms and synthetic constructs is desirable because evolutionary pressure typically forces natural systems to become highly optimized and efficient. A classical example is the development of dirt- and water-repellent paint (coating) from the observation that the surface of the lotus flower plant is practically unsticky for anything (the lotus effect). Examples of bionics in engineering include the hulls of boats imitating the thick skin of dolphins; sonar, radar, and medical ultrasound imaging imitating the echolocation of bats; and the arch imitating the spinal column.
In the field of computer science, the study of bionics has produced artificial neurons, artificial neural networks, and swarm intelligence. Evolutionary computation was also motivated by bionics ideas but it took the idea further by simulating evolution in silico and producing well-optimized solutions that had never appeared in nature.
It is estimated by Julian Vincent, professor of biomimetics at the University of Bath in the UK, that "at present there is only a 10% overlap between biology and technology in terms of the mechanisms used".
Contents |
[edit] History
The name biomimetics was coined by Otto Schmitt in the 1950s. The term bionics was coined by Jack E. Steele in 1958 while working at the Aeronautics Division at Wright-Patterson Air Force Base in Dayton.
[edit] Methods
Often, the study of bionics emphasizes implementing a function found in nature rather than just imitating biological structures. For example, in computer science, cybernetics tries to model the feedback and control mechanisms that are inherent in intelligent behavior, while artificial intelligence tries to model the intelligent function regardless of the particular way it can be achieved.
The conscious copying of examples and mechanisms from natural organisms and ecologies is a form of applied case-based reasoning, treating nature itself as a database of solutions that already work. Proponents argue that the selective pressure placed on all natural life forms minimizes and removes failures.
Although almost all engineering could be said to be a form of biomimicry, the modern origins of this field are usually attributed to Buckminster Fuller and its later codification as a field of study to Janine Benyus.
Roughly, we can distinguish three biological levels in biology after which technology can be modelled:
- Mimicking natural methods of manufacture of chemical compounds to create new ones
- Imitating mechanisms found in nature (velcro)
- Studying organizational principles from social behaviour of organisms, such as the flocking behaviour of birds or the emergent behaviour of bees and ants
[edit] Examples of biomimetics
- Velcro is the most famous example of biomimetics. In 1948, the Swiss engineer George de Mestral was cleaning his dog of burrs picked up on a walk when he realized how the hooks of the burrs clung to the fur.
- Leonardo da Vinci's flying machines and ships are early examples of drawing from nature in engineering.
- Julian Vincent drew from the study of pinecones when he developed in 2004 "smart" clothing that adapts to changing temperatures. "I wanted a nonliving system which would respond to changes in moisture by changing shape", he said. "There are several such systems in plants, but most are very small -- the pinecone is the largest and therefore the easiest to work on". Pinecones respond to warmer temperatures by opening their scales (to disperse their seeds). The smart fabric does the same thing, opening up when it is warm, and shutting tight when cold.
- "Morphing aircraft wings" that change shape according to the speed and duration of flight have been designed in 2004 by biomimetic scientists from Penn State University. The morphing wings were inspired by different bird species that have differently shaped wings according to the speed at which they fly. In order to change the shape and underlying structure of the aircraft wings, the researchers needed to make the overlying skin also be able to change, which their design does by covering the wings with fish-inspired scales that could slide over each other. In some respects this is a refinement of the swing-wing design.
- Nanostructures and physical mechanisms that produce the shining color of butterfly wings were reproduced in silicon by Greg Parker, professor of Electronics and Computer Science at the University of Southampton and research student Luca Plattner in the field of photonics, which is electronics using photons as the information carrier instead of electrons.
- self-purification of surfaces: paints and roof tiles that keep their surface clean just like the lotus does.
- neuromorphic chips, silicon retinae or cochleae whose wiring is modelled after real neural networks. S.a.: connectivity
- synthetic or 'robotic' vegetation, which are machines designed to mimic many of the functions of living vegetation as an aid to conservation and restoration.
[edit] Specific uses of the term
[edit] In medicine
Bionics is a term which refers to flow of ideas from biology to engineering and vice versa. Hence, there are two slightly different points of view regarding the meaning of the word.
In medicine, Bionics means the replacement or enhancement of organs or other body parts by mechanical versions. Bionic implants differ from mere prostheses by mimicking the original function very closely, or even surpassing it.
Bionics' German equivalent "Bionik" always takes the broader scope in that it tries to develop engineering solutions from biological models. This approach is motivated by the fact that biological solutions will always be optimized by evolutionary forces.
While the technologies that make bionic implants possible are still in a very early stage, a few bionic items already exist, the best known being the cochlear implant, a device for deaf people. By 2004 fully functional artificial hearts have been developed. Significant further progress is expected to take place with the advent of nanotechnologies. A well known example of a proposed nanodevice is a respirocyte, an artificial red cell, designed (though not built yet) by Robert Freitas.
Kwabena Boahen from Ghana was a professor in the Department of Bioengineering at the University of Pennsylvania. During his eight years at Penn, he developed a silicon retina that was able to process images in the same manner as a living retina. He confirmed the results by comparing the electrical signals from his silicon retina to the electrical signals produced by a salamander eye while the two retinas were looking at the same image.
[edit] Politics
A political form of biomimcry is bioregional democracy, wherein political borders conform to natural ecoregions rather than human cultures or the outcomes of prior conflicts.
Critics of these approaches often argue that ecological selection itself is a poor model of minimizing manufacturing complexity or conflict, and that the free market relies on conscious cooperation, agreement, and standards as much as on efficiency - more analogous to sexual selection. Charles Darwin himself contended that both were balanced in natural selection - although his contemporaries often avoided frank talk about sex, or any suggestion that free market success was based on persuasion, not value.
Advocates, especially in the anti-globalization movement, argue that the mating-like processes of standardization, financing and marketing, are already examples of runaway evolution - rendering a system that appeals to the consumer but which is inefficient at use of energy and raw materials. Biomimicry, they argue, is an effective strategy to restore basic efficiency.
Biomimicry is also the second principle of Natural Capitalism.
[edit] Bionic Hornet
In November 2006 the Israeli Deputy Prime Mister Shimon Peres announced plans to develop a tiny flying robot the size of hornet that would be able to chase, photograph and kill its targets. Prototypes for the new weapons are expected within three years. [2]
[edit] Other uses
In a more specific meaning, it is a creativity technique that tries to use biological prototypes to get ideas for engineering solutions. This approach is motivated by the fact that biological organisms and their organs have been well optimized by evolution.
A less common and maybe more recent meaning of the term "bionics" refers to merging organism and machine. This approach results in a hybrid systems combining biological and engineering parts, which can also be referred as cybernetic organism (cyborg).
In 2006 Mercedes-Benz introduced its Bionic concept car.
See also: implant, prosthesis.
[edit] See also
- Bioimplantronics
- Biophysics
- Important publications in bionics
- Cyborg
- List of environment topics
- Biomedical engineering
- Biomechatronics
Compare with:
[edit] External links
- Technology And The Quality Of Life: Part One--A Vision Of The Future
- Boxfish - DaimlerChrysler
- Bionics2Space: Bionics & Space System Design
- Biomimicry Institute
- Biomimicry Guild
- LiveScience on Biomimetic armour
- Israel developing anti-militant "bionic hornet"
- An overview of biomimetics/biomimicry at the Science Creative Quarterly
- Rehabilitation Institute of Chicago's Neuro-Controlled Bionic Arm.
- Neural Interface bionic Arm
- Brain Controlled Video Game
- Biomimetics Network for Industrial Sustainability (BIONIS)
- FurTech outdoor clothing using feather and fur technology.
[edit] References
- European Space Agency - Advanced Concepts Team Biomimetics Website
- BioMimicry
- Biomimicry: Innovation Inspired by Nature. 1997. Janine Benyus.
- Biomimicry for Optimization, Control, and Automation, Springer-Verlag, London, UK, 2005, Kevin M. Passino
- Ideas Stolen Right From Nature (Wired Magazine)
- Big Bennett Bionic
- Bionics and Engineering: The Relevance of Biology to Engineering, presented at Society of Women Engineers Convention, Seattle, WA, 1983, Jill E. Steele