Binomial inverse theorem

From Wikipedia, the free encyclopedia

In mathematics, the binomial inverse theorem is useful for expressing matrix inverses in different ways.

If A,\ U,\ B,\ V\! are matrices of sizes p\times p,\ p\times q,\ q\times q,\ q\times p respectively, then

\left(A+UBV\right)^{-1}= A^{-1} - A^{-1}UB\left(B+BVA^{-1}UB\right)^{-1}BVA^{-1}

provided A\! and B + BVA^{-1}UB\! are nonsingular. Note that if B\! is invertible, the two B\! terms flanking the quantity inverse in the right-hand side can be replaced with (B^{-1})^{-1}\!, which results in

\left(A+UBV\right)^{-1}= A^{-1} - A^{-1}U\left(B^{-1}+VA^{-1}U\right)^{-1}VA^{-1}

This is the matrix inversion lemma, which can also be derived using matrix blockwise inversion.

[edit] Verification

First notice that

\left(A + UBV\right) A^{-1}UB = UB + UBVA^{-1}UB = U \left(B + BVA^{-1}UB\right).

Now multiply the matrix we wish to invert by its alleged inverse

\left(A + UBV\right) \left( A^{-1} - A^{-1}UB\left(B + BVA^{-1}UB\right)^{-1}BVA^{-1} \right)
= I_p + UBVA^{-1} - U \left(B + BVA^{-1}UB\right) \left(B + BVA^{-1}UB\right)^{-1}BVA^{-1}
= I_p + UBVA^{-1} - U BVA^{-1} = I_p \!

which verifies that it is the inverse.

So we get that -- if A^{-1}\! and \left(B + BVA^{-1}UB\right)^{-1} exist, then \left(A + UBV\right)^{-1} exists and is given by the theorem above.

[edit] Special cases

If p = q\! and U = V = I_p\! is the identity matrix, then

\left(A+B\right)^{-1} = A^{-1} - A^{-1}B\left(B+BA^{-1}B\right)^{-1}BA^{-1}.

If B = I_q\! is the identity matrix and q = 1\!, then U is a column vector, written u, and V is a row vector, written vT. Then the theorem implies

\left(A+uv^T\right)^{-1} = A^{-1}- \frac{A^{-1}uv^TA^{-1}}{1+v^TA^{-1}u}.

This is useful if one has a matrix A with a known inverse A − 1 and one needs to invert matrices of the form A + uvT quickly.

If we set A = I_p\! and B = I_q\!, we get

\left(I_p + UV\right)^{-1} = I_p - U\left(I_q + VU\right)^{-1}V

In particular, if q = 1\!, then

\left(I+uv^T\right)^{-1} = I - \frac{uv^T}{1+v^Tu}.

[edit] See also