Axiomatic system

From Wikipedia, the free encyclopedia

In mathematics, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A mathematical theory consists of an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system; usually though the effort towards complete formalisation brings diminishing returns in certainty, and a lack of readability for humans. Therefore discussion of axiomatic systems is normally only semi-formal. A formal theory typically means an axiomatic system, for example formulated within model theory. A formal proof is a complete rendition of a mathematical proof within a formal system.

Contents

[edit] Properties

An axiomatic system is said to be consistent if it lacks contradiction, i.e. the ability to derive both a statement and its negation from the system's axioms.

In an axiomatic system, an axiom is called independent if it is not a theorem that can be derived from other axioms in the system. A system will be called independent if each of its underlying axioms is independent.

Although independence is not a necessary requirement for a system, consistency is. An axiomatic system will be called complete if for every statement, either itself or its negation is derivable. This is very difficult to achieve, however, and as shown by the combined works of Godel and Cohen, impossible for axiomatic systems involving infinite sets. So, along with consistency, relative consistency is also the mark of a worthwhile axiom system. This is when the undefined terms of a first axiom system are provided definitions from a second such that the axioms of the first are theorems of the second.

A good example is the relative consistency of neutral geometry or absolute geometry with respect to the theory of the real number system. Lines and points are undefined terms in absolute geometry, but assigned meanings in the theory of real numbers in a way that is consistent with both axiom systems.

[edit] Models

A model for an axiomatic system is a well-defined set, which assigns meaning for the undefined terms presented in the system, in a manner that is correct with the relations defined in the system. The existence of a concrete model* proves the consistency of a system.

Models can also be used to show the independence of an axiom in the system. By constructing a valid model for a subsystem without a specific axiom, we show that the omitted axiom is independent if its correctness does not necessarily follow from the subsystem.

Two models are said to be isomorphic if a one-to-one correspondence can be found between their elements, in a manner that preserves their relationship. An axiomatic system for which every model is isomorphic to another is called categorial (sometimes categorical), and the property of categoriality (categoricity) ensures the completeness of a system.

* A model is called concrete if the meanings assigned are objects and relations from the real world, as opposed to an abstract model which is based on other axiomatic systems.

The first axiomatic system was Euclidean geometry.

[edit] Axiomatic method

The axiomatic method is often discussed as if it were a unitary approach, or uniform procedure. With the example of Euclid to appeal to, it was indeed treated that way for many centuries: up until the beginning of the nineteenth century it was generally assumed, in European mathematics and philosophy (for example in Spinoza's work) that the heritage of Greek mathematics represented the highest standard of intellectual finish (development more geometrico, in the style of the geometers).

This traditional approach, in which axioms were supposed to be self-evident and so indisputable, was swept away during the course of the nineteenth century, by the development of Non-Euclidean geometry, the foundations of real analysis, Cantor's set theory and Frege's work on foundations, and Hilbert's 'new' use of axiomatic method as a research tool. For example, group theory was first put on an axiomatic basis towards the end of that century. Once the axioms were clarified (that inverse elements should be required, for example), the subject could proceed autonomously, without reference to the transformation group origins of those studies.

Therefore, there are at least three 'modes' of axiomatic method current in mathematics, and in the fields it influences. In caricature, possible attitudes are:

  1. Accept my axioms and you must accept their consequences;
  2. I reject one of your axioms and accept extra models;
  3. My set of axioms defines a research programme.

The first case is the classic deductive method. The second goes by the slogan be wise, generalise; it may go along with the assumption that concepts can or should be expressed at some intrinsic 'natural level of generality'. The third was very prominent in the mathematics of the twentieth century, in particular in subjects based around homological algebra.

It is easy to see that the axiomatic method has limitations outside mathematics. For example, in political philosophy axioms that lead to unacceptable conclusions are likely to be rejected wholesale; so that no one really assents to version 1 above.

[edit] See also

[edit] References

Weisstein, Eric W. "Axiomatic System." From MathWorld--A Wolfram Web Resource.[1]

[2]