Autonomic nervous system
From Wikipedia, the free encyclopedia
The autonomic nervous system (ANS) (or visceral nervous system) is the part of the peripheral nervous system that controls homeostasis, that is the constancy of the content of tissues in gasses, ions and nutrients. It does so mostly by controlling cardiovascular, digestive and respiratory functions, but also salivation, perspiration, diameter of the pupils, micturition - (the discharge of urine), and erection. Many of the activities of the ANS are involuntary. However, breathing, for example, can be in part consciously controlled. Indeed, although breathing is a purely homeostatic function in aquatic vertebrates, in land vertebrates it accomplishes much more than oxygenating the blood: it is essential to sniff a prey or a flower, to blow a candle, to talk or sing. This example, among others, illustrates that the so-called “autonomic nervous system” is not truly autonomous. It is anatomically and functionally linked to the rest of the nervous system and a strict delineation is impossible.
The ANS is nevertheless a classical term, still widely used throughout the scientific and medical community. Its most useful definition could be: the sensory and motor neurons that innervate the viscera. These neurons form reflex arcs that pass through the lower brainstem or medulla oblongata. This explains that when the central nervous system (CNS) is damaged experimentally or by accident above that level, a vegetative life is still possible, whereby cardiovascular, digestive and respiratory functions are adequately regulated.
Contents |
[edit] Anatomy
The reflex arcs of the ANS comprise a sensory (or afferent) arm, and a motor (or efferent, or effector) arm. The latter alone is represented on the figure.
[edit] Sensory neurons
The sensory arm is made of “primary visceral sensory neurons” found in the peripheral nervous system (PNS), in “cranial sensory ganglia”: the geniculate, petrosal and nodose ganglia, appended respectively to cranial nerves VII, IX and X. These sensory neurons monitor the levels of carbon dioxide, oxygen and sugar in the blood, arterial pressure and the chemical composition of the stomach and gut content. (They also convey the sense of taste, a conscious perception). Blood oxygen and carbon dioxide are in fact directly sensed by the carotid body, a small collection of chemosensors at the bifurcation of the carotid artery, innervated by the petrosal (IXth) ganglion.
Primary sensory neurons project (synapse) onto “second order” or relay visceral sensory neurons located in the medulla oblongata, forming the nucleus of the solitary tract (nTS), that integrates all visceral information. The nTS also receives input from a nearby chemosensory center, the area postrema, that detects toxins in the blood and the cerebrospinal fluid and is essential for chemically induced vomiting and conditional taste aversion (the memory that ensures that an animal which has been poisoned by a food never touches it again). All these visceral sensory informations constantly and unconsciously modulate the activity of the motor neurons of the ANS
[edit] Motor neurons
Motor neurons of the ANS are also located in ganglia of the PNS, called “autonomic ganglia”. They belong to three categories with different effects on their target organs (see below “Function”): sympathetic, parasympathetic and enteric.
Sympathetic ganglia are located in two sympathetic chains close to the spinal chord: the prevertebral and pre-aortic chains. Parasympathetic ganglia, in contrast, are located in close proximity to the target organ: the submandibular ganglion close to salivatory glands, paracardiac ganglia close to the heart etc… Enteric ganglia, which as their name implies innervate the digestive tube, are located inside its walls and collectively contain as many neurons as the entire spinal chord, including local sensory neurons, motor neurons and interneurons. It is the only truly autonomous part of the ANS and the digestive tube can function surprisingly well even in isolation. For that reason the enteric nervous system has been called “the second brain”.
The activity of autonomic ganglionic neurons is modulated by “preganglionic neurons” (also called improperly but classically "visceral motoneurons") located in the central nervous system. Preganglionc sympathetic neurons are in the spinal chord, at thoraco-lumbar levels. Preganglionic parasympathetic neurons are in the medulla oblongata (forming visceral motor nuclei: the dorsal motor nucleus of the vagus nerve (dmnX), the nucleus ambiguus, and salivatory nuclei) and in the sacral spinal chord. Enteric neurons are also modulated by input from the CNS, from preganglionic neurons located, like parasympathetic ones, in the medulla oblongata (in the dmnX).
The feedback from the sensory to the motor arm of visceral reflex pathways is provided by direct or indirect connections between the nucleus of the solitary tract and visceral motoneurons.
[edit] Function
Sympathetic and parasympathetic divisions typically function in opposition to each other. But this opposition is better termed complementary in nature rather than antagonistic. For an analogy, one may think of the sympathetic division as the accelerator and the parasympathetic division as the brake. The sympathetic division typically functions in actions requiring quick responses. The parasympathetic division functions with actions that do not require immediate reaction. Consider sympathetic as "fight or flight" and parasympathetic as "rest and digest".
However, many instances of sympathetic and parasympathetic activity cannot be ascribed to "fight" or "rest" situations. For example, standing up from a reclining or sitting position would entail an unsustainable drop in blood pressure if not for a compensatory increase in the arterial sympathetic tonus. Another example is the constant, second to second modulation of heart rate by sympathetic and parasympathetic influences, as a function of the respiratory cycles. More generally, these two systems should be seen as permanently modulating vital functions, in usually antagonistic fashion, to achieve homeostasis. Some typical actions of the sympathetic and parasympathetic systems are listed below:
[edit] Sympathetic nervous system
- Diverts blood flow away from the gastro-intestinal (GI) tract and skin via vasoconstriction.
- Blood flow to skeletal muscles, the lung is not only maintained, but enhanced (by as much as 1200%, in the case of skeletal muscles).
- Dilates bronchioles of the lung, which allows for greater alveolar oxygen exchange.
- Increases heart rate and the contractility of cardiac cells (myocytes), thereby providing a mechanism for the enhanced blood flow to skeletal muscles.
- Dilates pupils and relaxes the lens, allowing more light to enter the eye.
[edit] Parasympathetic nervous system
- Dilates blood vessels leading to the GI tract, increasing blood flow. This is important following the consumption of food, due to the greater metabolic demands placed on the body by the gut.
- The parasympathetic nervous system can also constrict the bronchiolar diameter when the need for oxygen has diminished.
- During accommodation, the parasympathetic nervous system causes constriction of the pupil and lens.
- The parasympathetic nervous system stimulates salivary gland secretion, and accelerates peristalsis, so, in keeping with the rest and digest functions, appropriate PNS activity mediates digestion of food and indirectly, the absorption of nutrients.
- Is also involved in erection of genitals, via the pelvic splanchnic nerves 2-4.
[edit] Neurotransmitters and pharmacology
At the effector organs, sympathetic ganglionic neurons release noradrenaline (norepinephrine) to act on adrenergic receptors, with the exception of the sweat glands and the adrenal medulla:
- At sweat glands, the neurotransmitter is acetylcholine, which acts on muscarinic receptors.
- At the adrenal cortex, there is no postsynaptic neuron. Instead the presynaptic neuron releases acetylcholine to act on nicotinic receptors.
- Stimulation of the adrenal medulla releases adrenaline (epinephrine) into the bloodstream which will act on adrenoceptors, producing a widespread increase in sympathetic activity.
In the parasympathetic system, ganglionic neurons use acetylcholine as a neurotransmitter, to stimulate muscarinic receptors.
The following table reviews the actions of these neurotransmitters as a function of their receptors.
Sympathetic (adrenergic, with exceptions) | Parasympathetic (muscarinic) | |
circulatory system | ||
cardiac output | increases | M2: decreases |
SA node: heart rate (chronotropic) | β1, β2: increases | M2: decreases |
cardiac muscle: contractility (inotropic) | β1, β2: increases | M2: decreases (atria only) |
conduction at AV node | β1: increases | M2: decreases |
vascular smooth muscle | M3: contracts; α: contracts; β2: relaxes | --- |
platelets | α2: aggregates | --- |
renal artery | constricts | --- |
hepatic artery | dilates | --- |
mast cells - histamine | β2: inhibits | --- |
respiratory system | ||
smooth muscles of bronchioles | β2: relaxes (major contribution); α1: contracts (minor contribution) | M3: contracts |
nervous system | ||
pupil of eye | α1: relaxes | M3: contracts |
ciliary muscle | β2: relaxes | M3: contracts |
digestive system | ||
salivary glands: secretions | β: stimulates viscous, amylase secretions; α1 = stimulates potassium cation | stimulates watery secretions |
lacrimal glands (tears) | decreases | M3: increases |
kidney (renin) | secretes | --- |
parietal cells | --- | M1: secretion |
liver | α1, β2: glycogenolysis, gluconeogenesis | --- |
adipose cells | β3: stimulates lipolysis | --- |
GI tract motility | decreases | M1, M3: increases |
smooth muscles of GI tract | α, β2: relaxes | M3: contracts |
sphincters of GI tract | α1: contracts | M3: relaxes |
glands of GI tract | inhibits | M3: secretes |
endocrine system | ||
pancreas (islets) | α2: decreases secretion from beta cells, increases secretion from alpha cells | increases stimulation from alpha cells and beta cells |
adrenal medulla | N: secretes epinephrine | --- |
urinary system | ||
bladder wall | β2: relaxes | contracts |
ureter | α1: contracts | relaxes |
sphincter | α1: contracts; β2 relaxes | relaxes |
reproductive system | ||
uterus | α1: contracts; β2: relaxes | --- |
genitalia | α: contracts | M3: erection |
integument | ||
sweat gland secretions | M: stimulates (major contribution); α1: stimulates (minor contribution) | --- |
arrector pili | α1: stimulates | --- |
[edit] See also
[edit] External links
[edit] Further reading
- The Second Brain, Michael D. Gershon, HarperCollins Publishers, New York (1998)
Central nervous system (Brain, Spinal cord) | Peripheral nervous system | Somatic nervous system | Autonomic nervous system (Sympathetic, Parasympathetic) | Sensory system